2 resultados para Production processes
em DigitalCommons@The Texas Medical Center
Resumo:
Biotechnology refers to the broad set of techniques that allow genetic manipulation of organisms. The techniques of biotechnology have broad implications for many industries, however it promises the greatest innovations in the production of products regulated by the Food and Drug Administration (FDA). Like many other powerful new technologies, biotechnology may carry risks as well as benefits. Several of its applications have engendered fervent emotional reactions and raised serious ethical concerns, especially internationally. ^ First, in my paper I discuss the historical and technical background of biotechnology. Second, I examine the development of biotechnology in Europe, the citizens' response to genetically modified (“GM”) foods and the governments' response. Third, I examine the regulation of bioengineered products and foods in the United States. ^ In conclusion, there are various problems with the current status of regulation of GM foods in the United States. These are four basic flaws: (1) the Coordinated Framework allows for too much jurisdictional overlap of biotechnological foods, (2) GM foods are considered GRAS and consequently, are placed on the market without pre-market approval, (3) federal mandatory labeling of GM foods cannot occur until the question of whether or not nondisclosure of a genetic engineering production processes is misleading or material information and (4) an independent state-labeling scheme of GM foods will most likely impede interstate commerce. ^
Resumo:
Secondary metabolites are produced by numerous organisms and can either be benign to humans or harmful. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often located in subtelomeric regions of the chromosome. These clusters are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Secondary metabolites are also regulated by a variety of factors, including nutritional factors, environmental factors and developmental processes. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal organisms, although no study has demonstrated the direct binding of any protein to a promoter region in the gliotoxin cluster. I report here two novel proteins, GipA, a C2H2 transcription factor and GipB, a hybrid sensor kinase, which are involved in regulating the gliotoxin biosynthetic cluster. GipA plays an important role in gliotoxin production, as high-copy expression of gipA induces gliotoxin biosynthesis and loss of gipA reduces gliotoxin biosynthesis by 50%. GipB is also involved in regulating gliotoxin production, as high-copy expression of gipB induces gliotoxin biosynthesis, but only during certain stages of asexual development. Furthermore, loss of gipB reduces gliotoxin biosynthesis by 10%. Based on data obtained from this project, I propose a model for the regulation of gliA, the efflux pump of the gliotoxin cluster, which involves GipB signaling through both GliZ and GipA. I propose that GliZ and GipA are interdependent, as mutation of the GipA DNA binding site in the gliA promoter negatively affects both GliZ-mediated and GipA-mediated induction of gliA. This is further supported by the fact that GliZ cannot fully induce gliA in the absence of GipA and vice versa. This is the first time that anyone has shown evidence of a protein directly binding to the gliotoxin cluster. Even though biosynthetic clusters are often coordinately regulated, my model raises the possibility that gliA is independently regulated, as the layout of the binding site in the gliA promoter is not present upstream of any other genes in the gliotoxin cluster, except for gliZ.