4 resultados para Principal Component Analysis (PCA)
em DigitalCommons@The Texas Medical Center
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^
Resumo:
Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^
Resumo:
Background: Inflammation is implicated in the development of cancer related fatigue (CRF). However there is limited literature on the mediators of inflammation (namely), cytokines and their receptors, associated with clinically significant fatigue and response to treatment. Methods: We reviewed 37 advanced cancer patients with fatigue (≥4/10), who participated in two Randomized Controlled Trials, of anti-inflammatory agents (Thalidomide and Dexamethasone) for CRF. Responders showed improvement in FACIT-F subscale at the end of study (Day 15). Baseline patient characteristics and symptoms were assessed by FACIT-F, ESAS; serum cytokines [IL-1β and receptor antagonist (IL-1RA), IL-6, IL-6R, TNF-α and sTNF-R1 and R2, IL-8, IL-10, IL-17] levels measured by Luminex. Data were analyzed using principal component analysis (PCA) [reporting cumulative variance (variance) for the first four components] to determine their association with fatigue and response to treatment. Results: Females were 54%. Mean (SD) was as follows for age, 61(14); baseline FACIT (F) scores, 21.4(8.6); ESAS Fatigue item, 6.5(1.9); and FACIT-F change, 6.4(9.7); ESAS (fatigue) change, -2 (2.41). Baseline median in pg/mL for IL-6, TNF-α, IL-1β were 31.9; 18.9; 0.55, respectively. Change in IL-6 negatively correlated with change in FACIT-F scores (p=0.02). Baseline CRF (FACIT-F score) was associated with IL-6, IL-6R and IL-17, Variance = 78% whereas IL-10, IL-1RA, TNF-α and IL-1β were associated with improvement of CRF, Variance=74%. Conversely, IL-6 and IL-8 were associated with no improvement or worsening of CRF, Variance= 93%. Conclusions: Change in IL-6 negatively correlated with change in FACIT-F scores. IL-6, IL-6R and IL-17 are associated with CRF while IL-6 and IL-8 were associated with no improvement of CRF. Further studies are warranted confirm our findings.
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^