3 resultados para Pressure biofeedback unit

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Selectively manned units have a long, international history, both military and civilian. Some examples include SWAT teams, firefighters, the FBI, the DEA, the CIA, and military Special Operations. These special duty operators are individuals who perform a highly skilled and dangerous job in a unique environment. A significant amount of money is spent by the Department of Defense (DoD) and other federal agencies to recruit, select, train, equip and support these operators. When a critical incident or significant life event occurs, that jeopardizes an operator's performance; there can be heavy losses in terms of training, time, money, and potentially, lives. In order to limit the number of critical incidents, selection processes have been developed over time to “select out” those individuals most likely to perform below desired performance standards under pressure or stress and to "select in" those with the "right stuff". This study is part of a larger program evaluation to assess markers that identify whether a person will fail under the stresses in a selectively manned unit. The primary question of the study is whether there are indicators in the selection process that signify potential negative performance at a later date. ^ Methods. The population being studied included applicants to a selectively manned DoD organization between 1993 and 2001 as part of a unit assessment and selection process (A&S). Approximately 1900 A&S records were included in the analysis. Over this nine year period, seventy-two individuals were determined to have had a critical incident. A critical incident can come in the form of problems with the law, personal, behavioral or family problems, integrity issues, and skills deficit. Of the seventy-two individuals, fifty-four of these had full assessment data and subsequent supervisor performance ratings which assessed how an individual performed while on the job. This group was compared across a variety of variables including demographics and psychometric testing with a group of 178 individuals who did not have a critical incident and had been determined to be good performers with positive ratings by their supervisors.^ Results. In approximately 2004, an online pre-screen survey was developed in the hopes of preselecting out those individuals with items that would potentially make them ineligible for selection to this organization. This survey has aided the organization to increase its selection rates and save resources in the process. (Patterson, Howard Smith, & Fisher, Unit Assessment and Selection Project, 2008) When the same prescreen was used on the critical incident individuals, it was found that over 60% of the individuals would have been flagged as unacceptable. This would have saved the organization valuable resources and heartache.^ There were some subtle demographic differences between the two groups (i.e. those with critical incidents were almost twice as likely to be divorced compared with the positive performers). Upon comparison of Psychometric testing several items were noted to be different. The two groups were similar when their IQ levels were compared using the Multidimensional Aptitude Battery (MAB). When looking at the Minnesota Multiphasic Personality Inventory (MMPI), there appeared to be a difference on the MMPI Social Introversion; the Critical Incidence group scored somewhat higher. When analysis was done, the number of MMPI Critical Items between the two groups was similar as well. When scores on the NEO Personality Inventory (NEO) were compared, the critical incident individuals tended to score higher on Openness and on its subscales (Ideas, Actions, and Feelings). There was a positive correlation between Total Neuroticism T Score and number of MMPI critical items.^ Conclusions. This study shows that the current pre-screening process is working and would have saved the organization significant resources. ^ If one was to develop a profile of a candidate who potentially could suffer a critical incident and subsequently jeopardize the unit, mission and the safety of the public they would look like the following: either divorced or never married, score high on the MMPI in Social Introversion, score low on MMPI with an "excessive" amount of MMPI critical items; and finally scores high on the NEO Openness and subscales Ideas, Feelings, and Actions.^ Based on the results gleaned from the analysis in this study there seems to be several factors, within psychometric testing, that when taken together, will aid the evaluators in selecting only the highest quality operators in order to save resources and to help protect the public from unfortunate critical incidents which may adversely affect our health and safety.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.