2 resultados para Prediction model
em DigitalCommons@The Texas Medical Center
Resumo:
Background and purpose: Breast cancer continues to be a health problem for women, representing 28 percent of all female cancers and remaining one of the leading causes of death for women. Breast cancer incidence rates become substantial before the age of 50. After menopause, breast cancer incidence rates continue to increase with age creating a long-lasting source of concern (Harris et al., 1992). Mammography, a technique for the detection of breast tumors in their nonpalpable stage when they are most curable, has taken on considerable importance as a public health measure. The lifetime risk of breast cancer is approximately 1 in 9 and occurs over many decades. Recommendations are that screening be periodic in order to detect cancer at early stages. These recommendations, largely, are not followed. Not only are most women not getting regular mammograms, but this circumstance is particularly the case among older women where regular mammography has been proven to reduce mortality by approximately 30 percent. The purpose of this project was to increase our understanding of factors that are associated with stage of readiness to obtain subsequent mammograms. A secondary purpose of this research was to suggest further conceptual considerations toward the extension of the Transtheoretical Model (TTM) of behavior change to repeat screening mammography. ^ Methods. A sample (n = 1,222) of women 50 years and older in a large multi-specialty clinic in Houston, Texas was surveyed by mail questionnaire regarding their previous screening experience and stage of readiness to obtain repeat screening. A computerized database, maintained on all women who undergo mammography at the clinic, was used to identify women who are eligible for the project. The major statistical technique employed to select the significant variables and to examine the man and interaction effects of independent variables on dependent variables was polychotomous stepwise, logistic regression. A prediction model for each stage of readiness definition was estimated. The expected probabilities for stage of readiness were calculated to assess the magnitude and direction of significant predictors. ^ Results. Analysis showed that both ways of defining stage of readiness for obtaining a screening mammogram were associated with specific constructs, including decisional balance and processes of the change. ^ Conclusions. The results of the present study demonstrate that the TTM appears to translate to repeat mammography screening. Findings in the current study also support finding of previous studies that suggest that stage of readiness is associated with respondent decisional balance and the processes of change. ^
Resumo:
Maximizing data quality may be especially difficult in trauma-related clinical research. Strategies are needed to improve data quality and assess the impact of data quality on clinical predictive models. This study had two objectives. The first was to compare missing data between two multi-center trauma transfusion studies: a retrospective study (RS) using medical chart data with minimal data quality review and the PRospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study with standardized quality assurance. The second objective was to assess the impact of missing data on clinical prediction algorithms by evaluating blood transfusion prediction models using PROMMTT data. RS (2005-06) and PROMMTT (2009-10) investigated trauma patients receiving ≥ 1 unit of red blood cells (RBC) from ten Level I trauma centers. Missing data were compared for 33 variables collected in both studies using mixed effects logistic regression (including random intercepts for study site). Massive transfusion (MT) patients received ≥ 10 RBC units within 24h of admission. Correct classification percentages for three MT prediction models were evaluated using complete case analysis and multiple imputation based on the multivariate normal distribution. A sensitivity analysis for missing data was conducted to estimate the upper and lower bounds of correct classification using assumptions about missing data under best and worst case scenarios. Most variables (17/33=52%) had <1% missing data in RS and PROMMTT. Of the remaining variables, 50% demonstrated less missingness in PROMMTT, 25% had less missingness in RS, and 25% were similar between studies. Missing percentages for MT prediction variables in PROMMTT ranged from 2.2% (heart rate) to 45% (respiratory rate). For variables missing >1%, study site was associated with missingness (all p≤0.021). Survival time predicted missingness for 50% of RS and 60% of PROMMTT variables. MT models complete case proportions ranged from 41% to 88%. Complete case analysis and multiple imputation demonstrated similar correct classification results. Sensitivity analysis upper-lower bound ranges for the three MT models were 59-63%, 36-46%, and 46-58%. Prospective collection of ten-fold more variables with data quality assurance reduced overall missing data. Study site and patient survival were associated with missingness, suggesting that data were not missing completely at random, and complete case analysis may lead to biased results. Evaluating clinical prediction model accuracy may be misleading in the presence of missing data, especially with many predictor variables. The proposed sensitivity analysis estimating correct classification under upper (best case scenario)/lower (worst case scenario) bounds may be more informative than multiple imputation, which provided results similar to complete case analysis.^