2 resultados para Power Measurements
em DigitalCommons@The Texas Medical Center
Resumo:
Objective measurements of physical fitness and pulmonary function are related individually to long-term survival, both in healthy people and in those who are ill. These factors are furthermore known to be related to one another physiologically in people with pulmonary disease, because advanced pulmonary disease causes ventilatory limitation to exercise. Healthy people do not have ventilatory limitation to exercise, but rather have ventilatory reserve. The relationship between pulmonary function and exercise performance in healthy people is minimal. Exercise performance has been shown to modify the effect of pulmonary function on mortality in people with chronic obstructive pulmonary disease, but the relationship between these factors in healthy people has not been studied and is not known. The purpose of this study is to quantify the joint effects of pulmonary function and exercise performance as these bear on mortality in a cohort of healthy adults. This investigation is an historical cohort study over 20 years of follow-up of 29,624 adults who had complete preventive medicine, spirometry and treadmill stress examinations at the Cooper Clinic in Dallas, Texas.^ In 20 years of follow-up, there were 738 evaluable deaths. Forced expiratory volume in one second (FEV$\sb1$) percent of predicted, treadmill time in minutes percent of predicted, age, gender, body mass index, baseline smoking status, serum glucose and serum total cholesterol were all significant, independent predictors of mortality risk. There were no frank interactions, although age had an important increasing effect on the risk associated with smoking when other covariates were controlled for in a proportional-hazards model. There was no confounding effect of exercise performance on pulmonary function. In agreement with the pertinent literature on independent effects, each unit increase in FEV$\sb1$ percent predicted was associated with about eight tenths of a percent reduction in adjusted mortality rate. The concept of physiologic reserve is useful in interpretation of the findings. Since pulmonary function does not limit exercise tolerance in healthy adults, it is reasonable to expect that exercise tolerance would not modify the effect of pulmonary function on mortality. Epidemiologic techniques are useful for elucidating physiological correlates of mortality risk. ^
Resumo:
The problem of analyzing data with updated measurements in the time-dependent proportional hazards model arises frequently in practice. One available option is to reduce the number of intervals (or updated measurements) to be included in the Cox regression model. We empirically investigated the bias of the estimator of the time-dependent covariate while varying the effect of failure rate, sample size, true values of the parameters and the number of intervals. We also evaluated how often a time-dependent covariate needs to be collected and assessed the effect of sample size and failure rate on the power of testing a time-dependent effect.^ A time-dependent proportional hazards model with two binary covariates was considered. The time axis was partitioned into k intervals. The baseline hazard was assumed to be 1 so that the failure times were exponentially distributed in the ith interval. A type II censoring model was adopted to characterize the failure rate. The factors of interest were sample size (500, 1000), type II censoring with failure rates of 0.05, 0.10, and 0.20, and three values for each of the non-time-dependent and time-dependent covariates (1/4,1/2,3/4).^ The mean of the bias of the estimator of the coefficient of the time-dependent covariate decreased as sample size and number of intervals increased whereas the mean of the bias increased as failure rate and true values of the covariates increased. The mean of the bias of the estimator of the coefficient was smallest when all of the updated measurements were used in the model compared with two models that used selected measurements of the time-dependent covariate. For the model that included all the measurements, the coverage rates of the estimator of the coefficient of the time-dependent covariate was in most cases 90% or more except when the failure rate was high (0.20). The power associated with testing a time-dependent effect was highest when all of the measurements of the time-dependent covariate were used. An example from the Systolic Hypertension in the Elderly Program Cooperative Research Group is presented. ^