2 resultados para Potential investment gap

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA), mefloquine, 2-aminoethyldiphenyl borate (2-APB), 18-alpha-glycyrrhetinic acid, 18-beta-glycyrrhetinic acid (18-beta-GA), retinoic acid, flufenamic acid, niflumic acid, and carbenoxolone. The efficacy of each drug was determined by measuring the diffusion coefficient for Neurobiotin (Mills & Massey, 1998). MFA, 18-beta-GA, 2-APB and mefloquine were the most effective antagonists, completely eliminating A-type horizontal cell coupling at a concentration of 200 muM. Niflumic acid, flufenamic acid, and carbenoxolone were less potent. Additionally, carbenoxolone was difficult to wash out and also may be harmful, as the retina became opaque and swollen. MFA, 18-beta-GA, 2-APB and mefloquine also blocked coupling in B-type horizontal cells and AII amacrine cells. Because these cell types express different connexins, this suggests that the antagonists were relatively non-selective across several different types of gap junction. It should be emphasized that MFA was water-soluble and its effects on dye coupling were easily reversible. In contrast, the other gap junction antagonists, except carbenoxolone, required DMSO to make stock solutions and were difficult to wash out of the preparation at the doses required to block coupling in A-type HCs. The combination of potency, water solubility and reversibility suggest that MFA may be a useful compound to manipulate gap junction coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous harmful occupational exposures affect working teens in the United States. Teens working in agriculture and other heavy-labor industries may be at risk for occupational exposures to pesticides and solvents. The neurotoxicity of pesticides and solvents at high doses is well-known; however, the long term effects of these substances at low doses on occupationally exposed adolescents have not been well-studied. To address this research gap, a secondary analysis of cross-sectional data was completed in order to estimate the prevalence of self-reported symptoms of neurotoxicity among a cohort of high school students from Starr County, Texas, a rural area along the Texas-Mexico border. Multivariable linear regression was used to estimate the association between work status (i.e., no work, farm work, and non-farm work) and symptoms of neurotoxicity, while controlling for age, gender, Spanish speaking preference, inhalant use, tobacco use, and alcohol use. The sample included 1,208 students. Of these, the majority (85.84%) did not report having worked during the prior nine months compared to 4.80% who did only farm work, 6.21% who did only non-farm work, and 3.15% who did both types of work. On average, students reported 3.26 symptoms with a range from 0-16. The most commonly endorsed items across work status were those related to memory impairment. Adolescents employed in non-farm work jobs reported more neurotoxicity symptoms than those who reported that they did not work (Mean 4.31; SD 3.97). In the adjusted multivariable regression model, adolescents reporting non-farm work status reported an average of 0.77 more neurotoxicity symptoms on the Q16 than those who did not work (P = 0.031). The confounding variables included in the final model were all found to be factors significantly associated with report of neurotoxicity symptoms. Future research should examine the relationship between these variables and self-report of symptoms of neurotoxicity.^