10 resultados para Postmortem Human Brain
em DigitalCommons@The Texas Medical Center
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
Using diffusion tensor tractography, we quantified the microstructural changes in the association, projection, and commissural compact white matter pathways of the human brain over the lifespan in a cohort of healthy right-handed children and adults aged 6-68 years. In both males and females, the diffusion tensor radial diffusivity of the bilateral arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, corticospinal, somatosensory tracts, and the corpus callosum followed a U-curve with advancing age; fractional anisotropy in the same pathways followed an inverted U-curve. Our study provides useful baseline data for the interpretation of data collected from patients.
Resumo:
The cytochromes P450 comprise a superfamily of heme-containing mono-oxygenases. These enzymes metabolize numerous xenobiotics, but also play a role in metabolism of endogenous compounds. The P450 1A1 enzyme generally metabolizes polycyclic aromatic hydrocarbons, and its expression can be induced by aryl hydrocarbon receptor (AhR) activation. CYP1A1 is an exception to the generality that the majority of CYPs demonstrate highest expression in liver; CYP1Al is present in numerous extrahepatic tissues, including brain. This P450 has been observed in two forms, wildtype (WT) and brain variant (BV), arising from alternatively spliced mRNA transcripts. The CYP1A1 BV mRNA presented an exon deletion and was detected in human brain but not liver tissue of the same individuals. ^ Quantitative PCR analyses were performed to determine CYP1A1 WT and BV transcript expression levels in normal, bipolar disorder or schizophrenic groups. In our samples, we show that CYP1A1 BV mRNA, when present, is found alongside the full-length form. Furthermore, we demonstrate a significant decrease in expression of CYP1A1 in patients with bipolar disorder or schizophrenia. The expression level was not influenced by post-mortem interval, tissue pH, age, tobacco use, or lifetime antipsychotic medication load. ^ There is no indication of increased brain CYP1A1 expression in normal smokers versus non-smokers in these samples. We observed slightly increased CYP1A1 expression only in bipolar and schizophrenic smokers versus non-smokers. This may be indicative of complex interactions between neuronal chemical environments and AhR-mediated CYP1A1 induction in brain. ^ Structural homology modeling demonstrated that P450 1A1 BV has several alterations to positions/orientations of substrate recognition site residues compared to the WT isoform. Automated substrate docking was employed to investigate the potential binding of neurological signaling molecules and neurotropic drugs, as well as to differentiate specificities of the two P450 1A1 isoforms. We consistently observed that the BV isoform produced energetically favorable substrate dockings in orientations not observed for the same substrate in the WT isoform. These results demonstrated that structural differences, namely an expanded substrate access channel and active site, confer greater capacity for unique compound docking positions suggesting a metabolic profile distinct from the wildtype form for these test compounds. ^
Resumo:
Mutations disabling the retinoblastoma (Rb) pathway are among the most common in human cancers, including brain cancer. These mutations promote tumor development through deregulated control of the E2F family of transcription factors. E2F1 belongs to a class of E2F's identified as transcriptional activators and involved in the G1/S phase transition of the cell. However, E2F-1 presents with a paradox as it is considered to have membership in two gene classes, functioning as both an oncogene and a tumor suppressor. This unusual trait generates a degree of uncertainty on the role that E2F1 plays in the development or maintenance of any given tumor. Here we show that E2F1 functions as an oncogene in brain tumors through the generation of mice engineered to overexpress E2F1 specifically within glial cells and neuronal progenitors as directed by the GFAP promoter. Mice carrying the transgene develop with high penetrance a phenotype characterized by neurological deficits including paresia, ataxia, head tilt and seizures. MRI imagining of the tgE2F1 mice reveals a low incidence of mild hydrocephalus, and most notably, histological analysis demonstrates that 25% of tgE2F1 mice present with the spontaneous formation of malignant brain tumors. Overall these neoplasms show histological features from a wide range of aggressive brain cancers including medulloblastoma, choroid plexus carcinoma, primary neuroectodermic tumor and malignant gliomas. Isolation and characterization of astrocytes from the tgE2F1 animal reveals a highly proliferative population of cells with 55% ± 2.5 of the tgE2F1astrocytes, 35% ± 3.4 normal mouse astrocytes in S-phase and the acquired capacity to grow in anchorage independent conditions. Additionally tgE2F1 astrocytes show an aberrant phenotype with random chromosomal fusions and nearly all cells demonstrating polyploidy. Taken together, this model forces a comparison to human brain tumor formation. Mouse age as related to tumoral mimics the human scenario with juvenile tgE2F1 mice presenting embryonal tumors typically identified in children, and older tgE2F1 mice demonstrating gliomas. In this regard, this study suggests a global role for E2F1 in the formation and maintenance of multilineage brain tumors, irrefutably establishing E2F1 as an oncogene in the brain. ^
Resumo:
Brain metastasis, which occurs in 40%-60% of patients with advanced melanoma, has led directly to death in the majority of cases. Unfortunately, little is known about the biological and molecular basis of melanoma brain metastases. In our previous study, we developed a model to study human melanoma brain metastasis and found that Stat3 activity was increased in human brain metastatic melanoma cells when compared with that in cutaneous melanoma cells. The increased activation of Stat3 is also responsible for affecting melanoma angiogenesis in vivo and melanoma cell invasion in vitro and significantly affecting the expression of bFGF, VEGF, and MMP-2 in vivo and in vitro. Interestingly, a member of a new family of cytokine-inducible inhibitors of signal transduction, termed suppressors of cytokine signaling 1 (SOCS1) was found to negatively regulate the Janus kinase signal transducer and activator of transcription (Jak/STAT) signaling cascade. Here we report that restoration of SOCS1 expression by transfecting of SOCS1-expressing vector effectively inhibited melanoma brain metastasis through inhibiting Stat3 activation and further affecting melanoma angiogenesis and melanoma cell invasion in vitro, and significantly affected the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in vitro and in vivo. In addition, we used cDNA array to compare mRNA expression in the SOCS1-transfected and vector-transfected cell lines and found some genes are tightly correlated to the restoration of SOCS1. One of them is Caveolin-1 (Cav-1). Cav-1 was reported to function as a tumor suppressor gene by several groups. Finally, the Cav-1 expression is up-regulated in SOCS1-overexpressing cell line. Further study found the regulation of Cav-1 by SOCS1 occurs through inhibiting Stat3 activation. Activated Stat3 binds directly to Cav-1 promoter and the Cav-1 promoter within -575bp is essential for active Stat3 binding. My studies reveal that Stat3 activation and SOCS1 expression play important roles in melanoma metastases. Moreover, the expression between SOCS1, Stat3 and Cav-1 forms a feedback regulation loop. ^
Resumo:
Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^
Resumo:
Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^
Resumo:
High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.
Resumo:
A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. The long-term goal of this project is to identify regulators of aggregate formation by mutant SOD1 and other ALS-associated disease proteins. The specific aim of this thesis project is to assess the possibility of using the well-established Drosophila model system to study aggregation by human SOD1 (hSOD1) mutants. To this end, using wild type and the three mutant hSOD1 (A4V, G85R and G93A) most commonly found among fALS, I have generated 16 different SOD1 constructs containing either eGFP or mCherry in-frame fluorescent reporters, established and tested both cell- and animal-based Drosophila hSOD1 models. The experimental strategy allows for clear visualization of ectopic hSOD1 expression as well as versatile co-expression schemes to fully investigate protein aggregation specifically by mutant hSOD1. I have performed pilot cell-transfection experiments and verified induced expression of hSOD1 proteins. Using several tissue- or cell type-specific Gal4 lines, I have confirmed the proper expression of hSOD1 from established transgenic fly lines. Interestingly, in both Drosophila S2 cells and different fly tissues including the eye and motor neurons, robust aggregate formation by either wild type or mutant hSOD1 proteins was not observed. These preliminary observations suggest that Drosophila might not be a good experimental organism to study aggregation and toxicity of mutant hSOD1 protein. Nevertheless this preliminary conclusion implies the potential existence of a potent protective mechanism against mutant hSOD1 aggregation and toxicity in Drosophila. Thus, results from my SOD1-ALS project in Drosophila will help future studies on how to best employ this classic model organism to study ALS and other human brain degenerative diseases.