3 resultados para Postmortem
em DigitalCommons@The Texas Medical Center
Resumo:
Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.
Resumo:
Objective. To systematically review studies published in English on the relationship between plasma total homocysteine (Hcy) levels and the clinical and/or postmortem diagnosis of Alzheimer's disease (AD) in subjects who are over 60 years old.^ Method. Medline, PubMed, PsycINFO and Academic Search Premier, were searched by using the keywords "homocysteine", "Alzheimer disease" and "dementia", and "cognitive disorders". In addition, relevant articles in PubMed using the "related articles" link and by cross-referencing were identified. The study design, study setting and study population, sample size, the diagnostic criteria of the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer's Disease and Related Disorders Association (ADRDA), and description of how Hcy levels were measured or defined had to have been clearly stated. Empirical investigations reporting quantitative data on the epidemiology of the relationship between plasma total Hcy (exposure factor) and AD (outcome) were included in the systematic review.^ Results. A total of 7 studies, which included a total of 2,989 subjects, out of 388 potential articles met the inclusion criteria: four case control and three cohort studies were identified. All 7 studies had association statistics, such as the odds ratio (OR), the relative rates (RR), and the hazard ratio (HR) of AD, examined using multivariate and logistic regression analyses. Three case - comparison studies: Clarke et al. (1998) (OR: 4.5, 95% CI.: 2.2 - 9.2); McIlroy et al. (2002) (OR: 2.9, 95% CI.: 1.00–8.1); Quadri et al. (2004) (OR: 3.7, 95% CI.: 1.1 - 13.1), and two cohort studies: Seshadri et al. (2002) (RR: 1.8, 95% CI.: 1.3 - 2.5); Ravaglia et al. (2005) (HR: 2.1, 95% CI.: 1.7 - 3.8) found a significant association between serum total Hcy and AD. One case-comparison study, Miller et al. (2002) (OR: 2.2, 95% C.I.: 0.3 -16), and one cohort study, Luchsinger et al. (2004) (HR: 1.4, 95% C.I.: 0.7 - 2.3) failed to reject H0.^ Conclusions. The purpose of this review is to provide a thorough analysis of studies that examined the relationship between Hcy levels and AD. Five studies showed a positive statistically significant association between elevated total Hcy values and AD but the association was not statistically significant in two studies. Further research is needed in order to establish evidence of the strong, consistent association between serum total Hcy and AD as well as the presence of the appropriate temporal relationship. To answer these questions, it is important to conduct more prospective studies that examine the occurrence of AD in individuals with and without elevated Hcy values at baseline. In addition, the international standardization of measurements and cut-off points for plasma Hcy levels across laboratories is a critical issue to be addressed for the conduct of future studies on the topic.^
Resumo:
Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. The proteins of these genes form a complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1), which controls protein translation and cell growth. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. However, both disorders share cerebellar abnormalities. Therefore, we have characterized a novel mouse model in which the Tsc2 gene was selectively deleted from cerebellar Purkinje cells (Tsc2f/-;Cre). These mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well-reported postmortem finding in patients with ASD, we conducted a series of behavior tests to assess if Tsc2f/-;Cre mice displayed autistic-like deficits. Using the three chambered social choice assay, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. Tsc2f/-;Cre mice also demonstrated increased repetitive behavior as assessed with marble burying activity. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a haploinsufficient background lead to behavioral deficits that are characteristic of human autism. Therefore, Purkinje cells loss and/or dysfunction may be an important link between TSC and ASD. Additionally, we have examined some of the cellular mechanisms resulting from mutations in Tsc2 leading to Purkinje cell death. Loss of Tsc2 led to upregulation of mTORC1 and increased cell size. As a consequence of increased protein synthesis, several cellular stress pathways were upregulated. Principally, these included altered calcium signaling, oxidative stress, and ER stress. Likely as a consequence of ER stress, there was also upregulation of ubiquitin and autophagy. Excitingly, treatment with an mTORC1 inhibitor, rapamycin attenuated mTORC1 activity and prevented Purkinje cell death by reducing of calcium signaling, the ER stress response, and ubiquitin. Remarkably, rapamycin treatment also reversed the social behavior deficits, thus providing a promising potential therapy for TSC-associated ASD.