6 resultados para Pollution Haven
em DigitalCommons@The Texas Medical Center
Resumo:
A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^
Resumo:
Many studies have shown relationships between air pollution and the rate of hospital admissions for asthma. A few studies have controlled for age-specific effects by adding separate smoothing functions for each age group. However, it has not yet been reported whether air pollution effects are significantly different for different age groups. This lack of information is the motivation for this study, which tests the hypothesis that air pollution effects on asthmatic hospital admissions are significantly different by age groups. Each air pollutant's effect on asthmatic hospital admissions by age groups was estimated separately. In this study, daily time-series data for hospital admission rates from seven cities in Korea from June 1999 through 2003 were analyzed. The outcome variable, daily hospital admission rates for asthma, was related to five air pollutants which were used as the independent variables, namely particulate matter <10 micrometers (μm) in aerodynamic diameter (PM10), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Meteorological variables were considered as confounders. Admission data were divided into three age groups: children (<15 years of age), adults (ages 15-64), and elderly (≥ 65 years of age). The adult age group was considered to be the reference group for each city. In order to estimate age-specific air pollution effects, the analysis was separated into two stages. In the first stage, Generalized Additive Models (GAMs) with cubic spline for smoothing were applied to estimate the age-city-specific air pollution effects on asthmatic hospital admission rates by city and age group. In the second stage, the Bayesian Hierarchical Model with non-informative prior which has large variance was used to combine city-specific effects by age groups. The hypothesis test showed that the effects of PM10, CO and NO2 were significantly different by age groups. Assuming that the air pollution effect for adults is zero as a reference, age-specific air pollution effects were: -0.00154 (95% confidence interval(CI)= (-0.0030,-0.0001)) for children and 0.00126 (95% CI = (0.0006, 0.0019)) for the elderly for PM 10; -0.0195 (95% CI = (-0.0386,-0.0004)) for children for CO; and 0.00494 (95% CI = (0.0028, 0.0071)) for the elderly for NO2. Relative rates (RRs) were 1.008 (95% CI = (1.000-1.017)) in adults and 1.021 (95% CI = (1.012-1.030)) in the elderly for every 10 μg/m3 increase of PM10 , 1.019 (95% CI = (1.005-1.033)) in adults and 1.022 (95% CI = (1.012-1.033)) in the elderly for every 0.1 part per million (ppm) increase of CO; 1.006 (95%CI = (1.002-1.009)) and 1.019 (95%CI = (1.007-1.032)) in the elderly for every 1 part per billion (ppb) increase of NO2 and SO2, respectively. Asthma hospital admissions were significantly increased for PM10 and CO in adults, and for PM10, CO, NO2 and SO2 in the elderly.^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
The association between fine particulate matter air pollution (PM2.5) and cardiovascular disease (CVD) mortality was spatially analyzed for Harris County, Texas, at the census tract level. The objective was to assess how increased PM2.5 exposure related to CVD mortality in this area while controlling for race, income, education, and age. An estimated exposure raster was created for Harris County using Kriging to estimate the PM2.5 exposure at the census tract level. The PM2.5 exposure and the CVD mortality rates were analyzed in an Ordinary Least Squares (OLS) regression model and the residuals were subsequently assessed for spatial autocorrelation. Race, median household income, and age were all found to be significant (p<0.05) predictors in the model. This study found that for every one μg/m3 increase in PM2.5 exposure, holding age and education variables constant, an increase of 16.57 CVD deaths per 100,000 would be predicted for increased minimum exposure values and an increase of 14.47 CVD deaths per 100,000 would be predicted for increased maximum exposure values. This finding supports previous studies associating PM2.5 exposure with CVD mortality. This study further identified the areas of greatest PM2.5 exposure in Harris County as being the geographical locations of populations with the highest risk of CVD (i.e., predominantly older, low-income populations with a predominance of African Americans). The magnitude of the effect of PM2.5 exposure on CVD mortality rates in the study region indicates a need for further community-level studies in Harris County, and suggests that reducing excess PM2.5 exposure would reduce CVD mortality.^
Resumo:
Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^