4 resultados para Plasticity retention index
em DigitalCommons@The Texas Medical Center
Resumo:
Here, we investigate the involvement of two sites of plasticity in the learning and expression of a simple associative motor behavior—the classically conditioned eyelid response. While previous studies clearly demonstrate that lesions of the anterior interpositus nucleus of the cerebellum abolish learned responses and prevent subsequent learning, studies investigating the effects of lesions of the cerebellar cortex on learning and retention have produced discrepant results. We complement ablative lesion studies of the cortex with the use of reversible, pharmacological blockade of cerebellar cortical transmission to investigate the role of the cerebellar cortex in eyelid conditioning. We demonstrate that both pharmacological blockade as well as focused ablative lesions of the cortex abolish timed responses and unmask responses with a fixed, short latency that are not displayed by the intact animal. Pharmacological blockade of cerebellar cortex output at various stages of acquisition and extinction reveals appropriate, learning dependent changes in the amplitude and probability of short latency responses during training. Acquisition of both short latency as well as timed responses is prevented by ablative lesions of the anterior lobe of the cerebellar cortex. These convergent results from technically distinct methods of removing the influence of the cerebellar cortex from conditioned behavior are consistent with the proposal that (1) eyelid conditioning engages two cerebellar sites of plasticity-one in the cortex and one in the anterior interpositus nucleus, (2) plasticity in the cerebellar cortex is necessary for proper response timing, (3) plasticity in the nucleus mediates the short latency responses unmasked by lesions of the cerebellar cortex, and (4) cerebellar cortical output is necessary for the induction of plasticity in the nucleus. ^
Resumo:
It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^
Resumo:
Dropout from obesity treatment has been a major factor associated with weight control failure, with few reliable predictors of dropouts or completers. Previous studies have tended to treat obese people as a homogeneous group with standard behavior modification-based interventions. Current research indicates there may be subgroups within the obese population, binge eaters and nonbinge eaters, who have different dropout rates. Current studies also recommend focusing on the subset of this subgroup that does not engage in purging (vomiting, laxative abuse, or excessive exercise) to compensate for binge eating. This research uses a secondary dataset (N = 156) from a prospective study in which participants were randomized to a Food Dependency (FD) and a Behavioral Self-Management (BSM) group for weight reduction. Criteria for subjects in the original study included (1) scoring higher on the existing Binge Eating Scale (BES) in order to ensure enrollment of more binge eaters and (2) no compensatory purging behavior for binge eating. Subjects were then reclassified in this study as binge eaters or nonbinge eaters using the more stringent proposed 1994 DSM-IV criteria for Binge Eating Disorder (BED). Subjects were followed for dropout. Variables studied were binge status, age at obesity onset, age at study baseline, class instructor, number of previous weight loss attempts, race, marital status, body mass index (BMI kg/m$\sp2$), type of intervention, work status, educational level, and social support. Stepwise backward regression Cox survival analysis indicated binge status had a consistent, statistically significant protective effect on dropout in which binge eaters were half as likely to dropout versus nonbinge eaters (p = 0.04). Cox proportional hazards analysis indicated no statistical difference in dropout by type of intervention (FD, p = 0.13; BSM, p = 0.80) when controlling for binge status. All other variables did not reach significance, which is consistent with the literature. Implications of these findings suggest that (1) the proposed 1994 DSM-IV criteria for BED is a more useful classification that the existing DSM-III-R criteria, and (2) the identification of subgroups among obese subjects is an important step in dropout and weight loss intervention research. Future research can confirm this finding. ^
Resumo:
Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^