2 resultados para Plasma-based nanoassembly

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^