2 resultados para Place conditioning
em DigitalCommons@The Texas Medical Center
Resumo:
Subfields of the hippocampus display differential dynamics in processing a spatial environment, especially when changes are introduced to the environment. Specifically, when familiar cues in the environment are spatially rearranged, place cells in the CA3 subfield tend to rotate with a particular set of cues (e.g., proximal cues), maintaining a coherent spatial representation. Place cells in CA1, in contrast, display discordant behaviors (e.g., rotating with different sets of cues or remapping) in the same condition. In addition, on average, CA3 place cells shift their firing locations (measured by the center of mass, or COM) backward over time when the animal encounters the changed environment for the first time, but not after that first experience. However, CA1 displays an opposite pattern, in which place cells exhibit the backward COM-shift only from the second day of experience, but not on the first day. Here, we examined the relationship between the environment-representing behavior (i.e., rotation vs. remapping) and the COM-shift of place fields in CA1 and CA3. Both in CA1 and CA3, the backward (as well as forward) COM-shift phenomena occurred regardless of the rotating versus remapping of the place cell. The differential, daily time course of the onset/offset of backward COM-shift in the cue-altered environment in CA1 and CA3 (on day 1 in CA1 and from day 2 onward in CA3) stems from different population dynamics between the subfields. The results suggest that heterogeneous, complex plasticity mechanisms underlie the environment-representating behavior (i.e., rotate/remap) and the COM-shifting behavior of the place cell.
Resumo:
The place-specific activity of hippocampal cells provides downstream structures with information regarding an animal's position within an environment and, perhaps, the location of goals within that environment. In rodents, recent research has suggested that distal cues primarily set the orientation of the spatial representation, whereas the boundaries of the behavioral apparatus determine the locations of place activity. The current study was designed to address possible biases in some previous research that may have minimized the likelihood of observing place activity bound to distal cues. Hippocampal single-unit activity was recorded from six freely moving rats as they were trained to perform a tone-initiated place-preference task on an open-field platform. To investigate whether place activity was bound to the room- or platform-based coordinate frame (or both), the platform was translated within the room at an "early" and at a "late" phase of task acquisition (Shift 1 and Shift 2). At both time points, CA1 and CA3 place cells demonstrated room-associated and/or platform-associated activity, or remapped in response to the platform shift. Shift 1 revealed place activity that reflected an interaction between a dominant platform-based (proximal) coordinate frame and a weaker room-based (distal) frame because many CA1 and CA3 place fields shifted to a location intermediate to the two reference frames. Shift 2 resulted in place activity that became more strongly bound to either the platform- or room-based coordinate frame, suggesting the emergence of two independent spatial frames of reference (with many more cells participating in platform-based than in room-based representations).