4 resultados para Physical Conditioning, Animal

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombospondin-5 (TSP5) is a large extracellular matrix glycoprotein found in musculoskeletal tissues. TSP5 mutations cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia; both show a characteristic growth plate phenotype with retention of TSP5, type IX collagen (Col9), and matrillin-3 in the rough endoplasmic reticulum. Whereas most studies focus on defining the disease process, few functional studies have been performed. TSP5 knockout mice have no obvious skeletal abnormalities, suggesting that TSP5 is not essential in the growth plate and/or that other TSPs may compensate. In contrast, Col9 knockout mice have diminished matrillin-3 levels in the extracellular matrix and early-onset osteoarthritis. To define the roles of TSP1, TSP3, TSP5, and Col9 in the growth plate, all knockout and combinatorial strains were analyzed using histomorphometric techniques. While significant alterations in growth plate organization were found in certain single knockout mouse strains, skeletal growth was only mildly disturbed. In contrast, dramatic changes in growth plate organization in TSP3/5/Col9 knockout mice resulted in a 20% reduction in limb length, corresponding to similar short stature in humans. These studies show that type IX collagen may regulate growth plate width; TSP3, TSP5, and Col9 appear to contribute to growth plate organization; and TSP1 may help define the timing of growth plate closure when other extracellular proteins are absent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for cerebellar involvement in motor learning was tested using classical eyelid conditioning in the rabbit. Briefly, we assume that modifications of the strength of granule cell synapses at Purkinje cells in the cerebellar cortex and mossy fiber (MF) synapses at cerebellar interpositus nuclei are responsible for the acquisition, adaptively-timed expression, and extinction of conditioned eyelid responses (CRs). A corollary of these assumptions is that the cerebellar cortex is necessary for acquisition and extinction. This model also suggests a mechanism whereby the cerebellar cortex can discriminate different times during a conditioned stimulus (CS) and thus mediate the learned timing of CRs. Therefore, experiments were done to determine the role of the cerebellar cortex in the timing, extinction, and acquisition of CRs. Lesions of the cerebellar cortex that included the anterior lobe disrupted the learned timing of CRs such that they occurred at extremely short latencies. Stimulation of MFs in the middle cerebellar peduncle as the CS could support differently timed CRs in the same animal. These data indicate that synaptic plasticity in the cerebellar cortex mediates the learned timing of CRs. These short-latency CRs which resulted from anterior lobe damage did not extinguish, while CRs in animals receiving lesions which did not include the anterior lobe extinguished normally. Preliminary data suggests that lesions of the anterior lobe which produce short-latency responses prevent the acquisition of CRs to a novel CS. These findings indicate that the anterior lobe of cerebellar cortex is necessary for eyelid conditioning. The involvement of the anterior lobe in eyelid conditioning has not been previously reported, however, the anterior lobe has generally been spared in lesion studies examining cerebellar cortex involvement in eyelid conditioning due to its relatively inaccessible location. The observation that the anterior lobe of the cerebellar cortex is not always required for the basic expression of CRs, but is necessary for response timing, extinction, and acquisition, is consistent with the hypothesis that eyelid conditioning can involve plasticity in both the cerebellar cortex and interpositus nucleus and that plasticity in the nucleus is controlled by Purkinje cell activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The association of measures of physical activity with coronary heart disease (CHD) risk factors in children, especially those for atherosclerosis, is unknown. The purpose of this study was to determine the association of physical activity and cardiovascular fitness with blood lipids and lipoproteins in pre-adolescent and adolescent girls.^ The study population was comprised of 131 girls aged 9 to 16 years who participated in the Children's Nutrition Research Center's Adolescent Study. The dependent variables, blood lipids and lipoproteins, were measured by standard techniques. The independent variables were physical activity measured as the difference between total energy expenditure (TEE) and basal metabolic rate (BMR), and cardiovascular fitness, VO$\rm\sb{2max}$(ml/min/kg). TEE was measured by the doubly-labeled water (DLW) method, and BMR by whole-room calorimetry. Cardiovascular fitness, VO$\rm\sb{2max}$(ml/min/kg), was measured on a motorized treadmill. The potential confounding variables were sexual maturation (Tanner breast stage), ethnic group, body fat percent, and dietary variables. A systematic strategy for data analysis was used to isolate the effects of physical activity and cardiovascular fitness on blood lipids, beginning with assessment of confounding and interaction. Next, from regression models predicting each blood lipid and controlling for covariables, hypotheses were evaluated by the direction and value of the coefficients for physical activity and cardiovascular fitness.^ The main result was that cardiovascular fitness appeared to be more strongly associated with blood lipids than physical activity. An interaction between cardiovascular fitness and sexual maturation indicated that the effect of cardiovascular fitness on most blood lipids was dependent on the stage of sexual maturation.^ A difference of 760 kcal/d physical activity (which represents the difference between the 25th and 75th percentile of physical activity) was associated with negligible differences in blood lipids. In contrast, a difference in 10 ml/min/kg of VO$\rm\sb{2max}$ or cardiovascular fitness (which represents the difference between the 25th and 75th percentile in cardiovascular fitness) in the early stages of sexual maturation was associated with an average positive difference of 15 mg/100 ml ApoA-1 and 10 mg/100 ml HDL-C. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we investigate the involvement of two sites of plasticity in the learning and expression of a simple associative motor behavior—the classically conditioned eyelid response. While previous studies clearly demonstrate that lesions of the anterior interpositus nucleus of the cerebellum abolish learned responses and prevent subsequent learning, studies investigating the effects of lesions of the cerebellar cortex on learning and retention have produced discrepant results. We complement ablative lesion studies of the cortex with the use of reversible, pharmacological blockade of cerebellar cortical transmission to investigate the role of the cerebellar cortex in eyelid conditioning. We demonstrate that both pharmacological blockade as well as focused ablative lesions of the cortex abolish timed responses and unmask responses with a fixed, short latency that are not displayed by the intact animal. Pharmacological blockade of cerebellar cortex output at various stages of acquisition and extinction reveals appropriate, learning dependent changes in the amplitude and probability of short latency responses during training. Acquisition of both short latency as well as timed responses is prevented by ablative lesions of the anterior lobe of the cerebellar cortex. These convergent results from technically distinct methods of removing the influence of the cerebellar cortex from conditioned behavior are consistent with the proposal that (1) eyelid conditioning engages two cerebellar sites of plasticity-one in the cortex and one in the anterior interpositus nucleus, (2) plasticity in the cerebellar cortex is necessary for proper response timing, (3) plasticity in the nucleus mediates the short latency responses unmasked by lesions of the cerebellar cortex, and (4) cerebellar cortical output is necessary for the induction of plasticity in the nucleus. ^