5 resultados para Photoinduced CS in Molecular system
em DigitalCommons@The Texas Medical Center
Resumo:
Follicular lymphoma is the most common lymphoid malignancy in humans. The bcl-2 transgenic mice, which mimic the human follicular lymphoma, initially exhibit a polyclonal hyperplasia due to the overriding of apoptosis by deregulated bcl-2. After a latency period of 15 month 20% of the animals developed clonal lymphomas. Approximately, 50% of these high grade lymphomas presented chromosomal translocations involving c-myc, suggesting that deregulation of this gene is important in the complementation with bcl-2. E$\mu$-myc x bcl-2 double transgenic mice were generated to assess the ability of this two genes to complement in an in vivo system. The double transgenic mice presented a shortened latency (3-4 weeks) and higher incidence of tumor development. Quantification of the extent of programmed cell death indicated that bcl-2 can abrogate the high rate of apoptotic cell death that results from myc deregulation. Bcl-2-Ig, E$\mu$-myc, and bcl-2/E$\mu$-myc lymphomas were examined using PCR-SSCP to detect the presence of p53 mutations in exons 5-9. A high incidence of p53 mutations in E$\mu$-myc lymphomas suggested that inactivating lesions of p53 may represent an important step in the genetic complementation of c-myc in lymphomagenesis. Surprisingly, p53 mutations were quite uncommon in bcl-2 lymphomas suggesting that inactivating mutations of p53 and overexpression of bcl-2 may not cooperate in lymphoma progression. To assess this question, we generated mice that contained a deregulated bcl-2 gene and were nullizygous for p53 (p53KO). No reduction in the tumor latency was observed in the p53KO/bcl-2-Ig hybrid mice when compared with p53 KO mice. Using splenic mononuclear cells isolated from p53KO mice and bcl-2 transgenic mice we demonstrated that bcl-2 suppresses p53 mediated apoptosis in response to DNA damage initiated by $\gamma$-radiation even though p53 protein is induced normally in the bcl-2 overexpressing cells. Western analysis of the expression of p53 target proteins after $\gamma$-radiation showed a correlation between the p53-dependent induction of bax protein after radiation and the ability of p53 to mediate apoptosis. ^
Resumo:
The cytochrome P450 enzyme catalysis requires two electrons transferred from NADPH-cytochrome P450 reductase (reductase) to P450. Electrostatic charge-pairing has been proposed to be one of the major forces in the interaction between P450 and reductase. In order to obtain further insight into the molecular basis for the protein interaction, I used two methods, chemical modification and specific anti-peptide antibodies, to study the involvement and importance of charged amino acid residues. Acetylation of lysine residues of P450c and P450b by acetic anhydride dramatically inhibited the reductase-supported P450c-dependent ethoxycoumarin hydroxylation activity, but P450 activity supported by cumene hydroperoxide is relatively unchanged. The modification of lysine residues of P450c and P450b did not grossly disturb the protein conformation as revealed by several spectral studies. This differential effect of lysine modification on the P450 activity in the system reconstituted with reductase versus the system supported by cumene hydroperoxide suggested an important role for P450 lysine residues in the interaction with reductase. Using $\rm\sp{14}C$-acetic anhydride, P450 lysine residues were labelled and further identified on P450c and P450b. Those lysine residues are at position 97, 271, 279, and 407 for P450c, and 251, 384, 422, 433, and 473 for P450b. Alignment of those identified lysine residues on P450c and P450b with amino acid residues identified in other studies indicated those residues reside in three major sequence areas. Modification of arginine residues of P450b by phenylglyoxal and 2, 3-butanedione have no significant effect on P450 activity either supported by NADPH and reductase or supported by cumene hydroperoxide. Further studies using $\rm\sp{14}C$-phenylglyoxal reveals that no incorporation of phenylglyoxal into P450b was found. These results demonstrated a predominant role of lysine residues of P450 in the electrostatic interaction with reductase. To understand the protein binding sites on each of P450 and reductase, I generated three anti-peptide antibodies against regions on reductase and five anti-peptide antibodies against five putative reductase binding sites on P450c. These anti-peptide antibodies were affinity purified and characterized on ELISA and by Western blot analysis. Inhibition experiments using these antibodies demonstrated that regions 109-120 and 204-220 of reductase are probably the two major binding sites for P450. The association of reductase with cytochromes P450 and cytochrome c may rely on different mechanisms. The data from experiments using anti-peptide (P450c) antibodies supports the important role of P450c lysine residues 271/279 and 458/460 in the interaction with reductase. ^
Resumo:
The β-catenin/Lef/Tcf-mediated Wnt pathway is central to the developmental of all animals, stem cell renewal, and cancer progression. Prior studies in frogs and mice have indicated that the ligand Wnt-4 is essential for the mesenchyme to epithelial transition that generates tubules in the context of kidney organogenesis. More recently, Wnt-9b in mice, was likewise found to be required. Yet despite the importance of Wnt signals in renal development, the corresponding Frizzled receptor(s) and downstream signaling mechanim(s) are unclear. My work addresses these knowledge gaps using in vitro (Madin-Darby Canine Kidney cells) and in vivo (Xenopus laevis and zebrafish pronephros) tubulogenic kidney model systems. Employing established reporter constructs of Wnt/β-catenin pathway activity, I have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions. I have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/β-catenin pathway using β-Engrailed and dnTCF-4, constructs that suppress this pathway. I have further found that MDCK cells express the Frizzled-6 receptor, and that Wnt-4 forms a biochemical complex with Frizzled-6, yet does not appear to transduce Wnt-4's canonical signal. Additionally, I demonstrate that standard Hepatocyte Growth Factor (HGF)-mediated (non-physiologic) induction of MDCK tubulogenesis in collagen matrices is not altered by activation or suppression of β-catenin signaling activity; however, β-catenin signaling maintains cell survival in this in vitro system. Using a Wnt/β-catenin signaling reporter in Xenopus laevis, I detect β-catenin signaling activity in the early pronephric epithelial kidney tubules. By inhibiting the Wnt/β-catenin signaling pathway in both zebrafish and Xenopus , a significant loss of kidney tubulogenesis is observed with little or no effect on adjoining axis or somite development. This inhibition also leads to the appearance of severe edema that phenocopies embryos depleted for Wnt-4. Tubulogenic loss does not appear to be caused by increased cell death in the Xenopus pronephric field, but rather by lessened expression of tubule epithelium genes associated with cellular differentiation. Together, my results show that Wnt/β-catenin signaling is required for renal tubule development and that Wnt-4 is a strong candidate for activating this pathway. ^
Resumo:
The p53 tumor suppressor gene product is negatively regulated by the product of its downstream target, mdm2. The mdm2 oncogene abrogates p53 transactivation function. Amplification of mdm2 occurs in 36% of human sarcomas, which often retain p53 in wild type form, suggesting that overexpression of mdm2 in tumors results in p53 inactivation. Thus, the relationship of p53 to mdm2 is important in tumorigenesis. The deletion of mdm2 in the mouse results in embryonic lethality by 5.5 days post coitum. Embryonic lethality of the mdm2 null embryos was overcome by simultaneous loss of the p53 tumor suppressor, which substantiates the importance of the negative regulatory function of MDM2 on p53 function in vivo. These data suggest that the loss of MDM2 function allowed the constitutively active p53 protein to induce either a complete G1 arrest or the p53-dependent apoptotic pathway, resulting in the death of the mdm2−/− embryos.^ The present study examines the hypothesis that the absence of mdm2 induces apoptosis due to p53 activation. Viability of the p53−/−mdm2−/− mice has allowed establishment of mouse embryo fibroblasts (MEFs) and a detailed examination of the properties of these cells. To introduce p53 into this system, and essentially recreate a mdm2 null cell, a temperature sensitive p53 (tsp53) point mutant (A135V) was used, which exhibits a nonfunctional, mutant conformation at 39°C and wild type, functional conformation at 32°C. Infected pools of p53−/− and p53−/−mdm2−/− MEFs with the tsp53 gene were established and single-cell clonal populations expressing tsp53 were selected. Shifting the cells from 39°C to 32°C caused p53−/−mdm2 −/− lines expressing tsp53 to undergo up to 80% apoptosis, which did not occur in the p53−/− lines expressing tsp53 nor the parental lines lacking p53 expression. Furthermore, the amount of p53 present in the clonal population determined the extent of apoptosis. Tsp53 is transcriptionally active in this system, however, it discriminates among different target promoters and does not induce the apoptosis effector targets bax or Fas/Apo1. ^ In summary, this study indicates that the presence or absence of mdm2 is the determining factor for the ability of p53 to trigger apoptosis in this system. The loss of mdm2 promotes p53-dependent apoptosis in MEFs in a cell cycle and dose-dependent manner. p53 is differentially phosphorylated in the presence and absence of mdm2, but does not induce the apoptosis effectors, bax or Fas/ Apo1. ^
Resumo:
Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^