27 resultados para Pharmaceutics and Drug Design
em DigitalCommons@The Texas Medical Center
Resumo:
Tumor growth often outpaces its vascularization, leading to development of a hypoxic tumor microenvironment. In response, an intracellular hypoxia survival pathway is initiated by heterodimerization of hypoxia-inducible factor (HIF)-1α and HIF-1β, which subsequently upregulates the expression of several hypoxia-inducible genes, promotes cell survival and stimulates angiogenesis in the oxygen-deprived environment. Hypoxic tumor regions are often associated with resistance to various classes of radio- or chemotherapeutic agents. Therefore, development of HIF-1α/β heterodimerization inhibitors may provide a novel approach to anti-cancer therapy. To this end, a novel approach for imaging HIF-1α/β heterodimerization in vitro and in vivo was developed in this study. Using this screening platform, we identified a promising lead candidate and further chemically derivatized the lead candidate to assess the structure-activity relationship (SAR). The most effective first generation drug inhibitors were selected and their pharmacodynamics and anti-tumor efficacy in vivo were verified by bioluminescence imaging (BLI) of HIF-1α/β heterodimerization in the xenograft tumor model. Furthermore, the first generation drug inhibitors, M-TMCP and D-TMCP, demonstrated efficacy as monotherapies, resulting in tumor growth inhibition via disruption of HIF-1 signaling-mediated tumor stromal neoangiogenesis.
Resumo:
The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.
Resumo:
Background. EAP programs for airline pilots in companies with a well developed recovery management program are known to reduce pilot absenteeism following treatment. Given the costs and safety consequences to society, it is important to identify pilots who may be experiencing an AOD disorder to get them into treatment. ^ Hypotheses. This study investigated the predictive power of workplace absenteeism in identifying alcohol or drug disorders (AOD). The first hypothesis was that higher absenteeism in a 12-month period is associated with higher risk that an employee is experiencing AOD. The second hypothesis was that AOD treatment would reduce subsequent absence rates and the costs of replacing pilots on missed flights. ^ Methods. A case control design using eight years (time period) of monthly archival absence data (53,000 pay records) was conducted with a sample of (N = 76) employees having an AOD diagnosis (cases) matched 1:4 with (N = 304) non-diagnosed employees (controls) of the same profession and company (male commercial airline pilots). Cases and controls were matched on the variables age, rank and date of hire. Absence rate was defined as sick time hours used over the sum of the minimum guarantee pay hours annualized using the months the pilot worked for the year. Conditional logistic regression was used to determine if absence predicts employees experiencing an AOD disorder, starting 3 years prior to the cases receiving the AOD diagnosis. A repeated measures ANOVA, t tests and rate ratios (with 95% confidence intervals) were conducted to determine differences between cases and controls in absence usage for 3 years pre and 5 years post treatment. Mean replacement costs were calculated for sick leave usage 3 years pre and 5 years post treatment to estimate the cost of sick leave from the perspective of the company. ^ Results. Sick leave, as measured by absence rate, predicted the risk of being diagnosed with an AOD disorder (OR 1.10, 95% CI = 1.06, 1.15) during the 12 months prior to receiving the diagnosis. Mean absence rates for diagnosed employees increased over the three years before treatment, particularly in the year before treatment, whereas the controls’ did not (three years, x = 6.80 vs. 5.52; two years, x = 7.81 vs. 6.30, and one year, x = 11.00cases vs. 5.51controls. In the first year post treatment compared to the year prior to treatment, rate ratios indicated a significant (60%) post treatment reduction in absence rates (OR = 0.40, CI = 0.28, 0.57). Absence rates for cases remained lower than controls for the first three years after completion of treatment. Upon discharge from the FAA and company’s three year AOD monitoring program, case’s absence rates increased slightly during the fourth year (controls, x = 0.09, SD = 0.14, cases, x = 0.12, SD = 0.21). However, the following year, their mean absence rates were again below those of the controls (controls, x = 0.08, SD = 0.12, cases, x¯ = 0.06, SD = 0.07). Significant reductions in costs associated with replacing pilots calling in sick, were found to be 60% less, between the year of diagnosis for the cases and the first year after returning to work. A reduction in replacement costs continued over the next two years for the treated employees. ^ Conclusions. This research demonstrates the potential for workplace absences as an active organizational surveillance mechanism to assist managers and supervisors in identifying employees who may be experiencing or at risk of experiencing an alcohol/drug disorder. Currently, many workplaces use only performance problems and ignore the employee’s absence record. A referral to an EAP or alcohol/drug evaluation based on the employee’s absence/sick leave record as incorporated into company policy can provide another useful indicator that may also carry less stigma, thus reducing barriers to seeking help. This research also confirms two conclusions heretofore based only on cross-sectional studies: (1) higher absence rates are associated with employees experiencing an AOD disorder; (2) treatment is associated with lower costs for replacing absent pilots. Due to the uniqueness of the employee population studied (commercial airline pilots) and the organizational documentation of absence, the generalizability of this study to other professions and occupations should be considered limited. ^ Transition to Practice. The odds ratios for the relationship between absence rates and an AOD diagnosis are precise; the OR for year of diagnosis indicates the likelihood of being diagnosed increases 10% for every hour change in sick leave taken. In practice, however, a pilot uses approximately 20 hours of sick leave for one trip, because the replacement will have to be paid the guaranteed minimum of 20 hour. Thus, the rate based on hourly changes is precise but not practical. ^ To provide the organization with practical recommendations the yearly mean absence rates were used. A pilot flies on average, 90 hours a month, 1080 annually. Cases used almost twice the mean rate of sick time the year prior to diagnosis (T-1) compared to controls (cases, x = .11, controls, x = .06). Cases are expected to use on average 119 hours annually (total annual hours*mean annual absence rate), while controls will use 60 hours. The cases’ 60 hours could translate to 3 trips of 20 hours each. Management could use a standard of 80 hours or more of sick time claimed in a year as the threshold for unacceptable absence, a 25% increase over the controls (a cost to the company of approximately of $4000). At the 80-hour mark, the Chief Pilot would be able to call the pilot in for a routine check as to the nature of the pilot’s excessive absence. This management action would be based on a company standard, rather than a behavioral or performance issue. Using absence data in this fashion would make it an active surveillance mechanism. ^
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
Resumo:
Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.
Resumo:
This research examines prevalence of alcohol and illicit substance use in the United States and Mexico and associated socio-demographic characteristics. The sources of data for this study are public domain data from the U.S. National Household Survey of Drug Abuse, 1988 (n = 8814), and the Mexican National Survey of Addictions, 1988 (n = 12,579). In addition, this study discusses methodologic issues in cross-cultural and cross-national comparison of behavioral and epidemiologic data from population-based samples. The extent to which patterns of substance abuse vary among subgroups of the U.S. and Mexican populations is assessed, as well as the comparability and equivalence of measures of alcohol and drug use in these national samples.^ The prevalence of alcohol use was somewhat similar in the two countries for all three measures of use: lifetime, past year and past year heavy use, (85.0%, 68.1%, 39.6% and 72.6%, 47.7% and 45.8% for the U.S. and Mexico respectively). The use of illegal substances varied widely between countries, with U.S. respondents reporting significantly higher levels of use than their Mexican counterparts. For example, reported use of any illicit substance in lifetime and past year was 34.2%, 11.6 for the U.S., and 3.3% and 0.6% for Mexico. Despite these differences in prevalence, two demographic characteristics, gender and age, were important correlates of use in both countries. Men in both countries were more likely to report use of alcohol and illicit substances than women. Generally speaking, a greater proportion of respondents in both countries 18 years of age or older reported use of alcohol for all three measures than younger respondents; and a greater proportion of respondents between the ages of 18 and 34 years reported use of illicit substances during lifetime and past year than any other age group.^ Additional substantive research investigating population-based samples and at-risk subgroups is needed to understand the underlying mechanisms of these associations. Further development of cross-culturally meaningful survey methods is warranted to validate comparisons of substance use across countries and societies. ^
Resumo:
Recently, it has become apparent that DNA repair mechanisms are involved in the malignant progression and resistance to therapy of gliomas. Many investigators have shown that increased levels of O6-methyl guanine DNA alkyltransferase, a DNA monoalkyl adduct repair enzyme, are correlated with resistance of malignant glioma cell lines to nitrosourea-based chemotherapy. Three important DNA excision repair genes ERCC1 (excision repair cross complementation group 1), ERCC2 (excision repair cross complementation group 2), and ERCC6 (excision repair cross complementation group 6) have been studied in human tumors. Gene copy number variation of ERCC1 and ERCC2 has been observed in primary glioma tissues. A number of reports describing a relationship between ERCC1 gene alterations and resistance to anti-cancer drugs have been also described. The levels of ERCC1 gene expression, however, have not been correlated with drug resistance in gliomas. The expression of ERCC6 gene transcribes has been shown to vary with tissue types and to be highest in the brain. There have been no comprehensive studies so far, however, of ERCC6 gene expression and molecular alterations in malignant glioma. This project examined the ERCC1 expression levels and correlated them with cisplatin resistance in malignant glioma cell lines. We also examined the molecular alterations of ERCC6 gene in primary glioma tissues and cells and analyzed whether these alterations are related to tumor progression and chemotherapy resistance. Our results indicate the presence of mutations and/or deletions in exons II and V of the ERCC6 gene, and these alterations are more frequent in exon II. Furthermore, the mutations and/or deletions in exon II were shown to be associated with increased malignant grade of gliomas. The results on the Levels of ERCC1 gene transcripts showed that expression levels correlate with cisplatin resistance. The increase in ERCC1 mRNA induced by cisplatin could be down-regulated by cyclosporin A and herbimycin A. The results of this study are likely to provide useful information for clinical treatment of human gliomas. ^
Resumo:
This study investigated the gender difference between male and female injection drug users’ (IDUs) life circumstances, income and risky sexual and drug behaviors. The study sample comprised of 318 male and 249 female injection drug users in Dar es Salaam, Tanzania. There were gender differences between male and female IDUs in terms of life circumstances and sexual behaviors. There were no differences in the drug behaviors among the two sexes. Women were more likely to be 21-25 years of age, have had more sexual partners in the last 30 days, traded sex for money, and have been sexually abused as a child. On the other hand, the males were more likely to be 26-30 years of age and have never used a condom during sex in the last 30 days. Regardless of the differences in sexual risk behaviors by gender, both male and female injection drug users in Dar es Salaam are at risk of HIV/AIDS, blood borne and other sexually transmitted diseases associated with drug use.^
Resumo:
Objective. This research study had two goals: (1) to describe resource consumption patterns for Medi-Cal children with cystic fibrosis, and (2) to explore the feasibility from a rate design perspective of developing specialized managed care plans for such a special needs population.^ Background. Children with special health care needs (CSHN) comprise about 2% of the California Medicaid pediatric population. CSHN have rare but serious health problems, such as cystic fibrosis. Medicaid programs, including Medi-Cal, are enrolling more and more beneficiaries in managed care to control costs. CSHN, however, do not fit the wellness model underlying most managed care plans. Child health advocates believe that both efficiency and quality will suffer if CSHN are removed from regionalized special care centers and scattered among general purpose plans. They believe that CSHN should be "carved out" from enrollment in general plans. One alternative is the Specialized Managed Care Plan, tailored for CSHN.^ Methods. The study population consisted of children under age 21 with CF who were eligible for Medi-Cal and California Children's Services program (CCS) during 1991. Health Care Financing Administration (HCFA) Medicaid Tape-to-Tape data were analyzed as part of a California Children's Hospital Association (CCHA) project.^ Results. Mean Medi-Cal expenditures per month enrolled were $2,302 for 457 CF children, compared to about \$1,270 for all 47,000 CCS special needs children and roughly $60 for almost 2.6 million ``regular needs'' children. For CF children, inpatient care (80\%) and outpatient drugs (9\%) were the major cost drivers, with {\it all\/} outpatient visits comprising only 2\% of expenditures. About one-third of CF children were eligible due to AFDC (Aid to Families with Dependent Children). Age group explained about 17\% of all expenditure variation. Regression analysis was used to select the best capitation rate structure (rate cells by age and eligibility group). Sensitivity analysis estimated moderate financial risk for a statewide plan (360 enrollees), but severe risk for single county implementation due to small numbers of children.^ Conclusions. Study results support the carve out of CSHN due to unique expenditure patterns. The Specialized Managed Care Plan concept appears feasible from a rate design perspective given sufficient enrollees. ^
Resumo:
Objective. To explore (1) the association between "club drug" use and unprotected anal intercourse (UAI) and (2) the association between binge drug use and UAI among HIV seronegative men who have sex with men (MSM) seeking HIV/STD testing at a local clinic in Houston. ^ Study design. A sub-sample of 297 HIV seronegative MSM from a cross-sectional study of drug and sexual behavior in Houston was conducted in 2006. Patients who were seeking HIV/STD testing at a local MSM-identified STD clinic were recruited for an anonymous computer-assisted interview. Analysis of identified secondary data consisted of self-reported information about demographic characteristics, use of drugs, and sexual behaviors. ^ Results. With new and casual sex partners, there was a strong and statistically significant association between use of "club drugs" and UAI. No association between binge drug use and UAI was evident. Men aware of HIV seropositivity or unaware of the HIV serostatus of their primary partner were less likely to report UAI. ^ Conclusion. These data suggest that in the Houston area, HIV-negative MSM club drug users, particularly multiple drug users, are at higher risk of UAI than comparable MSMs who do not use club drugs. Episode-level data regarding binge use of these and other drugs, and UAI should be collected in future studies to explore their relationship. The 'new partner' category should be added to sex partner types to measure sex and drug use behaviors in future studies.^ Keywords. HIV-negative MSM; club drugs; unprotected anal intercourse; binge drug use. ^
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.