38 resultados para Pertussis Vaccine -- immunology

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a disease with world wide consequences, affecting nearly a third of the world's population. The established vaccine for TB; an attenuated strain of Mycobacterium bovis Calmette Guerin (BCG), has existed virtually unchanged since 1921. Intensive research is focused on developing a TB vaccine that can surpass and improve the existing BCG vaccine. Lactoferrin, an iron binding protein found in mucosal secretions and granules of neutrophils was hypothesized to be an ideal adjuvant to enhance the efficacy of the BCG vaccine. Specifically, Lactoferrin enhanced the ratio of IL-12:IL-10 production from macrophages stimulated with LFS or infected with BCG, indicating the potential to affect T-cell development in vivo. Five different vaccination protocols were investigated for generation of host protective responses against MTB infection using Lactoferrin admixed to the BCG vaccine. Mice immunized and boosted at 2 weeks with BCG/Lactofefrin increased host protection against MTB infection by decreasing organ bacterial load and reducing lung histopathology. The observed postchallenge results paralleled with increasing production of IFN-γ, IL-2, TNF-α, and IL-12 from BCG stimulated splenocytes. In vitro studies examined possible mechanisms of Lactoferrin action on BCG infected macrophages and dendritic cells. Addition of Lactoferrin to BCG infected macrophages and dendritic cells increased stimulation of presensitized CD3+ and CD4+ T-cells. Analysis by fluorescent activated cell sorting (FACS) revealed an increase in surface expression of MHC I and decreased ratio of CD80/86 from BCG infected macrophages cultured with Lactoferrin. In contrast, Lactoferrin decreased surface expression of MHC I, MHC II, CD80, CD86, and CD40, but increased CD 11c, from BCG infected dendritic cells, indicating involvement of adhesion molecules. Overall, these studies indicate that Lactoferrin is a useful and effective adjuvant to improve efficacy of the BCG vaccine by enhancing generation of mycobacterial antigen specific T-cell responses through promotion of antigen presentation and T-cell stimulation.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undiagnosed infected mothers often are the source of pertussis illness in young infants. The Centers for Disease Control and Prevention (CDC) recommends Tdap vaccine for post-partum women before hospital discharge. This intervention has been implemented at Ben Taub General Hospital (BTGH) in Houston, TX since January 2008. Our objective was to compare the proportion of infants born at BTGH and developing pertussis to the total number of pertussis cases before and after the intervention. Methods. We conducted a cross-sectional comparative study between the pre-intervention (7/2000 to 12/2007) and post-intervention (1/2008 to 5/2009) periods. Information on pertussis diagnosis was determined using ICD-9 codes, infection control records, and molecular microbiology reports from Texas Children's Hospital (TCH) and BTGH. Only patients ≤ 6 months of age with laboratory-confirmed B. pertussis infection were included in the study. Results. 481 infants had pertussis illness; 353 (73.3%) during pre-intervention and 128 (26.6%) during post-intervention years. The groups were comparable in all measures including age (median 73 vs. 62.5 days; p=0.08), gender (males 54.2%; p=0.47), length of hospitalization (median 9.8 vs. 4 9.5 days; p=0.5), outcomes (2 deaths in each period; p=0.28) and pertussis illness at TCH (95.2% vs. 95.3%; p=0.9). The proportion of pertussis patients born at BTGH, and thus amenable to protection by the intervention, was not statically different between the two periods after adjusting for age, gender and ethnicity (7.3% vs. 9.3%; an OR=1.05, 95% CI 0.5-2.1, p=0.88). Conclusions. Vaccinating only mothers with Tdap in the post-partum period does not reduce the proportion of pertussis in infants age ≤ 6 months. Efforts should be directed at Tdap immunization of not only mothers, but also all household and key contacts of newborns to protect them against pertussis illness before the primary DTaP series is completed.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pertussis is an infectious disease caused by the bacteria Bordetella pertussis, and is associated with a serious respiratory infection, a prolonged cough, and can require hospitalization. A vaccine for adolescents and adults has been available since 2005. This paper examines one recommended immunization strategy to prevent pertussis among infants, called “cocooning.” The strategy focuses on creating immunity among adult caregivers so they serve as a protective cocoon to the newborns, who are too young to be vaccinated. This paper looks at relevant studies summarizing implementation of cocooning strategies and addresses the question – Does the research literature support the view of using cocooning as an effective strategy to prevent pertussis in infants? After exclusions, 8 studies remained for synthesis. The evidence shows that cocooning is complex strategy and the evidence is mixed when it comes to ensuring an increase in immunization of caregivers. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study examined the recent trends and characteristics of reported pertussis in Harris County from 2005-2010. ^ Methods: The study population included surveillance data from all reported pertussis cases from January 1, 2005 to December 31, 2010 to Harris County Public Health and Environmental Services (HCPHES). We calculated incidence and attack rates for varying age groups, race/ethnicity, and gender. Spatial analyses were conducted of hot spot and cluster of incident cases in Harris County census tracts. Maps were constructed using geographic information system. ^ Results: Age-specific incidence rates of reported cases of pertussis were highest among infants under a year of age and lowest among adults age 20 and older. Hispanics represented the most cases reported compared to any other race or ethnic group (42% of 483 cases). Age-adjusted rates were highest in 2009 at 9.81 cases per 100,000 population. Only 31.2% of people received at least four of the recommended five doses of vaccine. Spatial analyses revealed statistically significant clusters within the northeast region of Harris County. ^ Conclusions: Hispanic infants are the most at risk group for pertussis. Although 70% of cases had a history of immunization, 41.8% of infants were appropriately vaccinated for their age. Increased vaccination coverage may decrease the incidence of pertussis.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adjuvants are essential components of vaccine formulations that enhance adaptive immune responses to antigens, particularly for immunizations targeting the tolerogenic mucosal tissues, which are more biologically relevant for protective immunity against pathogens transmitted by the mucosal routes. Adjuvants possess the inherent capacity to bridge innate and adaptive immune responses through activating innate immune mediators. Here evidence is presented in support of the effectiveness of a synthetic glycolipid, alpha-Galactosylceramide (-GalCer), as an adjuvant for mucosal immunization with peptide and protein antigens, by oral and intranasal routes, to prime antigen-specific immune responses in multiple systemic and mucosal compartments. The adjuvant activity of -GalCer delivered by the intranasal route was manifested in terms of potent activation of NKT cells, an important innate immunity mediator, along with the activation of dendritic cells (DC) which serve as the professional antigen-presenting cells. Data from this investigation provide the first evidence for mucosal delivery as an effective means to harness the adjuvant potential of α-GalCer for priming as well as boosting cellular immune responses to co-administered immunogens. Unlike systemic administration where a single dose of α-GalCer leads to anergy of responding NKT cells and thus hinders delivery of booster immunizations, we demonstrated that administration of multiple doses of α-GalCer by the intranasal route affords repeated activation of NKT cells and the induction of broad systemic and mucosal immunity. This is specifically advantageous, and may be even essential, for vaccination regimens against mucosal pathogens such as the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), where priming of durable protective immunity at the mucosal portals of pathogen entry would be highly desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most lethal single infectious agent afflicting man today causing 2 million deaths per year. The World Health Organization recommends a vaccine as the best option to prevent this disease. The current vaccine, BCG, has a variable efficacy and does not protect adults. It is known that BCG vaccine becomes sequestered in special phagosome compartments of macrophages that do not fuse with lysosomes. Since lysosome fusion is necessary for peptide production and T cell priming leading to protective TH1 immunity, we hypothesized that vaccine efficacy is reduced and occurs perhaps due to non-lysosome dependent mechanisms. We therefore proposed an in depth analysis of phagosome environment, and its proteome to unravel mechanisms of antigen processing and presentation. We initially discovered that three mechanisms of pH regulation including vacuolar proton ATPase, phagocyte oxidase and superoxide dismutase (SOD) secretion from BCG vaccine affect antigen processing within phagosomes. These studies led to the discovery that a mutant of BCG vaccine which lacked SOD was a better vaccine. Subsequently, the proteomic analysis of vaccine phagosomes led to the discovery of novel protease (γ-secretase) enriched on BCG vaccine phagosomes. We then demonstrated that these proteases generated a peptide from the BCG vaccine which was presented through the MHC-II pathway to T cells and induced a TH1 response. The specificity of antigen production from γ-secretase was confirmed through siRNA knockdown of the components of the protease namely, nicastrin, presenilin and APH, which led to a decrease in antigen presentation. We therefore conclude that, even though BCG phagosomes are sequestered and do not fuse with lysosomes to generate peptide antigens, there are complex and novel in situ mechanisms within phagosomes that are capable of generating an immune response. We conclude that TH1 immunity to BCG vaccine arises mostly due to non-lysosome dependent immune mechanisms of macrophages and dendritic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIV can enter the body through Langerhans cells, dendritic cells, and macrophages in skin mucosa, and spreads by lysis or by syncytia. Since UVL induces of HIV-LTR in transgenic mice mid in cell lines in vitro, we hypothesized that UVB may affect HIV in people and may affect HIV in T cells in relation to dose, apoptosis, and cytokine expression. To determine whether HIV is induced by UVL in humans, a clinical study of HIV+ patients with psoriasis or pruritus was conducted during six weeks of UVB phototherapy, Controls were HIV-psoriasis patients receiving UVB and HIV+ KS subjects without UVB.Blood and skin biopsy specimens were collected at baseline, weeks 2 and 6, and 4 weeks after UVL. AIDS-related skin diseases showed unique cytokine profiles in skin and serum at baseline. In patients and controls on phototherapy, we observed the following: (1) CD4+ and CD8+ T cell numbers are not significantly altered during phototherapy, (2) p24 antigen levels, and also HIV plasma levels increase in patients not on antiviral therapy, (3) HIV-RNA levels in serum or plasma. (viral load) can either increase or decrease depending on the patient's initial viral load, presence of antivirals, and skin type, (4) HIV-RNA levels in the periphery are inversely correlated to serum IL-10 and (5) HIV+ cell in skin increase after UVL at 2 weeks by RT-PCR in situ hybridization mid we negatively correlated with peripheral load. To understand the mechanisms of UVB mediated HIV transcription, we treated Jurkat T cell lines stably transfected with an HIV-LTR-luciferase plasmid only or additionally with tat-SV-40 early promoter with UVB (2 J/m2 to 200 J/m2), 50 to 200 ng/ml rhIL-10, and 10 μg/ml PHA as control. HIV promoter activity was measured by luciferase normalized to protein. Time points up to 72 hours were analyzed for HIV-LTR activation. HIV-LTR activation had the following properties: (1) requires the presence of Tat, (2) occurs at 24 hours, and (3) is UVB dose dependent. Changes in viability by MTS (3-(4,5-dimethyhhiazol-2-y1)-5-(3-carboxymethoxyphonyl)-2-(4-sulfophenyl)-2H-tetrazolium) mixed with PMS (phenazine methosulfate) solution and apoptosis by propidium iodide and annexin V using flow cytometry (FC) were seen in irradiated Jurkat cells. We determined that (1) rhIL-10 moderately decreased HIV-LTR activation if given before radiation and greatly decreases it when given after UVB, (2) HIV-LTR activation was low at doses of greater than 70 J/m2, compared to activation at 50 J/m2. (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the impact of a clinic-based intervention program on the immunization status of limited-income urban children. The intervention program consisted of an information session for clinic health care providers and the placement of individualized immunization information labels on clinic notes at the time of each visit. The degree of impact of the intervention on immunization administration was ascertained through a comparison of two similar groups of infants born in the same months of the year immediately before (N = 201) and after (N = 203) the information session and initiation of the labeling system. The timeliness of administration of each diphtheria, pertussis, tetanus and trivalent oral polio vaccine (DPT/TOPV) in the first year series of three was compared pre- to postintervention. Significantly more third immunizations were given the postintervention subjects within ten days of the recommended time of application ( p = .0361). Life table analysis indicated that the probability of an infant's passing one year of age without the administration of the third immunization decreased for postintervention infants (p = .0515). The intervention was most successful in assuring administration of the series of immunizations in those infants who were seen by the health care provider for at least 50% of their first year visits. Results indicate that minor changes in the format of information given a relatively continuous provider can increase completion of immunization series in infants. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2004, Houston had one of the lowest childhood immunization levels among major metropolitan cities in the United States at 65% for the 4:3:1:3:3 vaccination series. Delays in the receipt of scheduled vaccinations may be related to missed opportunities due to health care provider lack of knowledge about catch-up regimens and contraindications for pediatric vaccination. The objectives of this study are to identify, measure, and report on VFC provider-practice characteristics, knowledge of catch-up regimens and contraindications, and use of Reminder recall (R/R) and moved or gone elsewhere (MOGE) practices among providers with high (>80%) and low (<70%) immunization coverage among 19-35 month old children. The sampling frame consists of 187 Vaccines for Children (VFC) providers with 2004 clinic assessment software application (CASA) scores. Data were collected by personal interview with each participating practice provider. Only ten VFC providers were successful at maximizing vaccinations for every vignette and no provider administered the maximum possible number of vaccinations at visit 2 for all six vignettes. Both coverage groups administered polio conjugate vaccine (PCV), haemophilus influenza type b (Hib), and diphtheria, tetanus and acellular pertussis (DTaP) most frequently and omitted most frequently varicella zoster vaccine (VZV) and measles, mumps, and rubella (MMR) vaccine. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influenza and pneumonia together comprise the seventh leading cause of death among adults in the U.S and were responsible for 65,163 deaths in 2003 and an average of 36,000 deaths per year in the United States from 1990 to 1999. Vaccination is efficacious and cost-effective in terms of preventing the infection and reducing both health care costs and productivity losses associated with influenza illness. The vaccine shortage of 2004–2005 resulted in a 39% decrease in the influenza vaccine supplies. During the fall of 2004, we conducted a nationwide, random-digit dialing, telephonic-interview survey of 1,202 adults aged 18 years and older to ascertain influenza vaccine knowledge, attitude and behavior. Of the 1,202 total interviewed subjects, 44.7% had received or intended to receive vaccine at the time of the survey (2004–05) and 39.6% had received the influenza vaccine the previous year (2003–04). Receipt of vaccine increased with previous receipt of the influenza vaccine (OR 13.17, 95% CI 8.65–20.08), increased motivation status (OR 7.58, 95% CI 4.03–14.25), subjective risk status (OR 3.33, 95% CI 2.23–4.97), age (OR 1.83, 95% CI 1.22–2.75) and previous receipt of the pneumococcal vaccine (OR 1.75, 95% CI 1.02–3.0). The influenza vaccine shortage of 2004–05 did not have a negative impact on the vaccination rates of study population. In addition to the increased rates, a large majority of respondents were also aware of the shortage of influenza vaccine during the 2004–05 season, about the indications for receiving the influenza vaccine, about alternative methods to prevent contracting the influenza and increased motivation to receive the vaccine. ^