6 resultados para Patient setup

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because the goal of radiation therapy is to deliver a lethal dose to the tumor, accurate information on the location of the tumor needs to be known. Margins are placed around the tumor to account for variations in the daily position of the tumor. If tumor motion and patient setup uncertainties can be reduced, margins that account for such uncertainties in tumor location in can be reduced allowing dose escalation, which in turn could potentially improve survival rates. ^ In the first part of this study, we monitor the location of fiducials implanted in the periphery of lung tumors to determine the extent of non-gated and gated fiducial motion, and to quantify patient setup uncertainties. In the second part we determine where the tumor is when different methods of image-guided patient setup and respiratory gating are employed. In the final part we develop, validate, and implement a technique in which patient setup uncertainties are reduced by aligning patients based upon fiducial locations in projection images. ^ Results from the first part indicate that respiratory gating reduces fiducial motion relative to motion during normal respiration and setup uncertainties when the patients were aligned each day using externally placed skin marks are large. The results from the second part indicate that current margins that account for setup uncertainty and tumor motion result in less than 2% of the tumor outside of the planning target volume (PTV) when the patient is aligned using skin marks. In addition, we found that if respiratory gating is going to be used, it is most effective if used in conjunction with image-guided patient setup. From the third part, we successfully developed, validated, and implemented on a patient a technique for aligning a moving target prior to treatment to reduce the uncertainties in tumor location. ^ In conclusion, setup uncertainties and tumor motion are a significant problem when treating tumors located within the thoracic region. Image-guided patient setup in conjunction with treatment delivery using respiratory gating reduces these uncertainties in tumor locations. In doing so, margins around the tumor used to generate the PTV can be reduced, which may allow for dose escalation to the tumor. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ensure the integrity of an intensity modulated radiation therapy (IMRT) treatment, each plan must be validated through a measurement-based quality assurance (QA) procedure, known as patient specific IMRT QA. Many methods of measurement and analysis have evolved for this QA. There is not a standard among clinical institutions, and many devices and action levels are used. Since the acceptance criteria determines if the dosimetric tools’ output passes the patient plan, it is important to see how these parameters influence the performance of the QA device. While analyzing the results of IMRT QA, it is important to understand the variability in the measurements. Due to the different form factors of the many QA methods, this reproducibility can be device dependent. These questions of patient-specific IMRT QA reproducibility and performance were investigated across five dosimeter systems: a helical diode array, radiographic film, ion chamber, diode array (AP field-by-field, AP composite, and rotational composite), and an in-house designed multiple ion chamber phantom. The reproducibility was gauged for each device by comparing the coefficients of variation (CV) across six patient plans. The performance of each device was determined by comparing each one’s ability to accurately label a plan as acceptable or unacceptable compared to a gold standard. All methods demonstrated a CV of less than 4%. Film proved to have the highest variability in QA measurement, likely due to the high level of user involvement in the readout and analysis. This is further shown by how the setup contributed more variation than the readout and analysis for all of the methods, except film. When evaluated for ability to correctly label acceptable and unacceptable plans, two distinct performance groups emerged with the helical diode array, AP composite diode array, film, and ion chamber in the better group; and the rotational composite and AP field-by-field diode array in the poorer group. Additionally, optimal threshold cutoffs were determined for each of the dosimetry systems. These findings, combined with practical considerations for factors such as labor and cost, can aid a clinic in its choice of an effective and safe patient-specific IMRT QA implementation.