2 resultados para Path Integral, Molecular Dynamics, Statistical Mechanics

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ras proteins serve as crucial signaling modulators in cell proliferation through their ability to hydrolyze GTP and exist in a GTP “on” state and GTP “off” state. There are three different human Ras isoforms: H-ras, N-ras and K-ras (4A and 4B). Although their sequence identity is very high at the catalytic domain, these isoforms differ in their ability to activate different effectors and hence different signaling pathways. Much of the previous work on this topic has attributed this difference to the hyper variable region of Ras proteins, which contains most of the sequence variance among the isoforms and encodes specificity for differential distribution in the membrane. However, we hypothesize that sequence variation on lobe II of Ras catalytic domain alters dynamics and leads to differential preference for different effectors or modulators. In this work, we used all atom molecular dynamics to analyze the dynamics in the catalytic domain of H-ras and K-ras. We have also analyzed the dynamics of a transforming mutant of H-ras and K-ras and further studied the dynamics of an effectorselective mutant of H-ras. Collectively we have determined that wild type K-ras is more dynamic than H-ras and that the structure of the effector binding loop more closely resembles that of the T35S Raf-selective mutant, possibly giving us a new view and insight into the v mode of effector specificity. Furthermore we have determined that specific mutations at the same location perturb the conformational equilibrium differently in H-ras and K-ras and that an enhanced oncogenic potential may arise from different structural perturbations for each point mutation of a specific isoform.