4 resultados para Passive sampling

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen dioxide (NO$\sb2)$ levels in sixteen substandard houses located in Houston, Texas were examined. The classification of the houses as substandard was based on an assessment of structural integrity which would affect air exchange rates. In these homes, unvented gas space heaters were operated as the primary source of heat.^ The Ogawa passive sampling device was used to measure NO$\sb2$ concentrations over 24 to 48-hour periods during generally cold weather. A sampler was placed in the kitchen and bedroom of each house. The female head of household was asked to wear a monitor during area monitoring to assess her personal exposure. Outdoor levels of NO$\sb2$ were also measured.^ Mean (standard deviation) levels of kitchen, bedroom and personal exposures were 280 (125) ppb, 256 (155) ppb and 164 (102) ppb, respectively. Additional short-term ($<$24 hours) samples were measured in three houses. The mean level of NO$\sb2$ measured outdoors was 51 ppb over the course of the study.^ The measurements obtained with the Ogawa sampler were compared to those levels obtained using a reference method (chemiluminescence). Outdoor levels measured with the diffusion samplers were 48% higher.^ These results suggest that wintertime NO$\sb2$ levels within substandard houses using gas appliances for heating and cooking are extremely elevated. Further work is needed to investigate the prevalence of possible health effects associated with these exposures. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the accuracy and precision of airborne volatile organic compound (VOC) concentrations measured using passive air samplers (3M 3500 organic vapor monitors) over extended sampling durations (9 and 15 days). A total of forty-five organic vapor monitor samples were collected at a State of Texas air monitoring site during two different sampling periods (July/August and November 2008). The results of this study indicate that for most of the tested compounds, there was no significant difference between long-term (9 or 15 days) sample concentrations and the means of parallel consecutive short-term (3 days) sample concentrations. Biases of 9 or 15-day measurements vs. consecutive 3-day measurements showed considerable variability. Those compounds that had percent bias values of <10% are suggested as acceptable for long-term sampling (9 and 15 days). Of the twenty-one compounds examined, 10 compounds are classified as acceptable for long-term sampling; these include m,p-xylene, 1,2,4-trimethylbenzene, n-hexane, ethylbenzene, benzene, toluene, o-xylene, d-limonene, dimethylpentane and methyl tertbutyl ether. The ratio of sampling procedure variability relative to variability within days was approximately 1.89 for both sampling periods for the 3-day vs. 9-day comparisons and approximately 2.19 for both sampling periods for the 3-day vs. 15-day comparisons. Considerably higher concentrations of most VOCs were measured during the November sampling period compared to the July/August period. These differences may be a result of varying meteorological conditions during these two time periods, e.g., the differences in wind direction, and wind speed. Further studies are suggested to further evaluate the accuracy and precision of 3M 3500 organic vapor monitors over extended sampling durations. ^