4 resultados para Panels of artistic designs
em DigitalCommons@The Texas Medical Center
Resumo:
Temperature sensitive (ts) mutant viruses have helped elucidate replication processes in many viral systems. Several panels of replication-defective ts mutants in which viral RNA synthesis is abolished at the nonpermissive temperature (RNA$\sp{-})$ have been isolated for Mouse Hepatitis Virus, MHV (Robb et al., 1979; Koolen et al., 1983; Martin et al., 1988; Schaad et al., 1990). However, no one had investigated genetic or phenotypic relationships between these different mutant panels. In order to determine how the panel of MHV-JHM RNA$\sp{-}$ ts mutants (Robb et al., 1979) were genetically related to other described MHV RNA$\sp{-}$ ts mutants, the MHV-JHM mutants were tested for complementation with representatives from two different sets of MHV-A59 ts mutants (Koolen et al., 1983; Schaad et al., 1990). The three ts mutant panels together were found to comprise eight genetically distinct complementation groups. Of these eight complementation groups, three complementation classes are unique to their particular mutant panel; genetically equivalent mutants were not observed within the other two mutant panels. Two complementation groups were common to all three mutant panels. The three remaining complementation groups overlapped two of the three mutant sets. Mutants MHV-JHM tsA204 and MHV-A59 ts261 were shown to be within one of these overlapping complementation groups. The phenotype of the MHV-JHM mutants within this complementation class has been previously characterized (Leibowitz et al., 1982; Leibowitz et al, 1990). When these mutants were grown at the permissive temperature, then shifted up to the nonpermissive temperature at the start of RNA synthesis, genome-length RNA and leader RNA fragments accumulated, but no subgenomic mRNA was synthesized. MHV-A59 ts261 produced leader RNA fragments identical to those observed with MHV-JHM tsA204. Thus, these two MHV RNA$\sp{-}$ ts mutants that were genetically equivalent by complementation testing were phenotypically similar as well. Recombination frequencies obtained from crosses of MHV-A59 ts261 with several of the gene 1 MHV-A59 mutants indicated that the causal mutation(s) of MHV-A59 ts261 was located near the overlapping junction of ORF1a and ORF1b, in the 3$\sp\prime$ end of ORF1a, or the 5$\sp\prime$ end of ORF1b. Sequence analysis of this junction and 1400 nucleotides into the 5$\sp\prime$ end of ORF1b of MHV-A59 ts261 revealed one nucleotide change from the wildtype MHV-A59. This substitution at nucleotide 13,598 (A to G) was a silent mutation in the ORF1a reading frame, but resulted in an amino acid change in ORF1b gene product (I to V). This amino acid change would be expressed only in the readthrough translation product produced upon successful ribosome frameshifting. A revertant of MHV-A59 ts261 (R2) also retained this guanidine residue, but had a second substitution at nucleotide 14,475 in ORF1b. This mutation results in the substitution of valine for an isoleucine.^ The data presented here suggest that the mutation in MHV-A59 ts261 (nucleotide 13,598) would be responsible for the MHV-JHM complementation group A phenotype. A second-site reversion at nucleotide 14,475 may correct this defect in the revertant. Sequencing of gene 1 immediately upstream of nucleotide 13,296 and downstream of nucleotide 15,010 must be conducted to test this hypothesis. ^
Resumo:
Prominent challenges facing nurse leaders are the growing shortage of nurses and the increasingly complex care required by acutely ill patients. In organizations that shortage is exacerbated by turnover and intent to leave. Unsatisfactory working conditions are cited by nurses when they leave their current jobs. Disengagement from the job leads to plateaued performance, decreased organizational commitment, and increased turnover. Solutions to these challenges include methods both to retain and to increase the effectiveness of each nurse. ^ The specific aim of this study was to examine the relationships among organizational structures thought to foster the clinical development of the nurse, with indicators of the development of clinical expertise, resulting in outcomes of positive job attitudes and effectiveness. Causal loop modeling is incorporated as a systems tool to examine developmental cycles both for an organization and for an individual nurse to look beyond singular events and investigate deeper patterns that emerge over time. ^ The setting is an academic specialty-care institution, and the sample in this cross-sectional study consists of paired data from 225 RNs and their nurse managers. Two panels of survey instruments were created based on the model's theoretical variables, one completed by RNs and the other by their Nurse Managers. The RN survey panel examined the variables of structural empowerment, magnet essentials, knowledge as identified by the Benner developmental stage, psychological empowerment, job stage, engagement, intent to leave, job satisfaction and the early recognition of patient complications. The nurse manager survey panel examined the Benner developmental stage, job stage, and overall level of nursing performance. ^ Four regression models were created based on the outcome variables. Each model identified significant organizational and individual characteristics that predicted higher job satisfaction, decreased intent to leave, more effectiveness as measured by early recognition and acting upon subtle patient complications, and better job performance. ^ Implications for improving job attitudes and effectiveness focus on ways that nursing leaders can foster a more empowering and healthy work environment. ^
Resumo:
Background: As obesity increases among U.S. workers, employers are implementing programs to increase physical activity and improve diets. Although programs to address individual determinants of obesity have been evaluated, less is known about the effects of workplace programs that change environmental factors, because most reviews have not isolated environmental programs; the one that did was published in 2005. ^ Objective: To update the 2005 review to determine the effectiveness of workplace environmental interventions. ^ Methods: The Medline database was searched for published English language reports (2003-2011) of randomized controlled (RCTs) or quasi-experimental trials (NRCTs) that evaluated strategies to modify physical activity opportunities or food services, targeting employees at least 18 years, not including retirees and that provided data for at least one physical activity, dietary, or health risk indicator. Three coders independently extracted study characteristics and scored the quality of study methods. Program effectiveness was determined using the 2005 review's best evidence approach. ^ Results: Seven studies represented in nine reports met eligibility criteria; three focused on diet and the remainder targeted diet and physical activity interventions. All but one study received a high quality score for internal validity. The evidence for the effectiveness of workplace environmental interventions was at best, inconclusive for diet and physical activity and limited for health risk indicators. The outcome constructs were inconsistent across the studies. ^ Conclusions: Limitations in the methods of the 2005 review made it challenging to draw conclusions about findings for this review that include: variation in outcome measures, reliance on distal measures without proximal behavior change measures, no distinction between changes at the workplace versus outside the workplace, and inappropriate analyses of cluster designs that biased findings toward statistical significance. The best evidence approach relied on vote-counting, using statistical significance alone rather than effect size and confidence intervals. Future research should address these limitations and use more rigorous methods; systematic reviews should use methods of meta-analysis to summarize study findings. These recommendations will help employers to better understand how environmental modifications in the workplace can support their efforts to combat the effects of obesity among employees.^
Resumo:
The development of targeted therapy involve many challenges. Our study will address some of the key issues involved in biomarker identification and clinical trial design. In our study, we propose two biomarker selection methods, and then apply them in two different clinical trial designs for targeted therapy development. In particular, we propose a Bayesian two-step lasso procedure for biomarker selection in the proportional hazards model in Chapter 2. In the first step of this strategy, we use the Bayesian group lasso to identify the important marker groups, wherein each group contains the main effect of a single marker and its interactions with treatments. In the second step, we zoom in to select each individual marker and the interactions between markers and treatments in order to identify prognostic or predictive markers using the Bayesian adaptive lasso. In Chapter 3, we propose a Bayesian two-stage adaptive design for targeted therapy development while implementing the variable selection method given in Chapter 2. In Chapter 4, we proposed an alternate frequentist adaptive randomization strategy for situations where a large number of biomarkers need to be incorporated in the study design. We also propose a new adaptive randomization rule, which takes into account the variations associated with the point estimates of survival times. In all of our designs, we seek to identify the key markers that are either prognostic or predictive with respect to treatment. We are going to use extensive simulation to evaluate the operating characteristics of our methods.^