7 resultados para Panel data probit model

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. In over 30 years, the prevalence of overweight for children and adolescents has increased across the United States (Barlow et al., 2007; Ogden, Flegal, Carroll, & Johnson, 2002). Childhood obesity is linked with adverse physiological and psychological issues in youth and affects ethnic/minority populations in disproportionate rates (Barlow et al., 2007; Butte et al., 2006; Butte, Cai, Cole, Wilson, Fisher, Zakeri, Ellis, & Comuzzie, 2007). More importantly, overweight in children and youth tends to track into adulthood (McNaughton, Ball, Mishra, & Crawford, 2008; Ogden et al., 2002). Childhood obesity affects body functions such as the cardiovascular, respiratory, gastrointestinal, and endocrine systems, including emotional health (Barlow et al., 2007, Ogden et al., 2002). Several dietary factors have been associated with the development of obesity in children; however, these factors have not been fully elucidated, especially in ethnic/minority children. In particular, few studies have been done to determine the effects of different meal patterns on the development of obesity in children. Purpose. The purpose of the study is to examine the relationships between daily proportions of energy consumed and energy derived from fat across breakfast, lunch, dinner, and snack, and obesity among Hispanic children and adolescents. Methods. A cross-sectional design was used to evaluate the relationship between dietary patterns and overweight status in Hispanic children and adolescents 4-19 years of age who participated in the Viva La Familia Study. The goal of the Viva La Familia Study was to evaluate genetic and environmental factors affecting childhood obesity and its co-morbidities in the Hispanic population (Butte et al., 2006, 2007). The study enrolled 1030 Hispanic children and adolescents from 319 families and examined factors related to increased body weight by focusing on a multilevel analysis of extensive sociodemographic, genetic, metabolic, and behavioral data. Baseline dietary intakes of the children were collected using 24-hour recalls, and body mass index was calculated from measured height and weight, and classified using the CDC standards. Dietary data were analyzed using a GEE population-averaged panel-data model with a cluster variable family identifier to include possible correlations within related data sets. A linear regression model was used to analyze associations of dietary patterns using possible covariates, and to examine the percentage of daily energy coming from breakfast, lunch, dinner, and snack while adjusting for age, sex, and BMI z-score. Random-effects logistic regression models were used to determine the relationship of the dietary variables with obesity status and to understand if the percent energy intake (%EI) derived from fat from all meals (breakfast, lunch, dinner, and snacks) affected obesity. Results. Older children (age 4-19 years) consumed a higher percent of energy at lunch and dinner and less percent energy from snacks compared to younger children. Age was significantly associated with percentage of total energy intake (%TEI) for lunch, as well as dinner, while no association was found by gender. Percent of energy consumed from dinner significantly differed by obesity status, with obese children consuming more energy at dinner (p = 0.03), but no associations were found between percent energy from fat and obesity across all meals. Conclusions. Information from this study can be used to develop interventions that target dietary intake patterns in obesity prevention programs for Hispanic children and adolescents. In particular, intervention programs for children should target dietary patterns with energy intake that is spread throughout the day and earlier in the day. These results indicate that a longitudinal study should be used to further explore the relationship of dietary patterns and BMI in this and other populations (Dubois et al., 2008; Rodriquez & Moreno, 2006; Thompson et al., 2005; Wilson et al., in review, 2008). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to address two research questions. First, ‘Can we identify factors that are determinants both of improved health outcomes and of reduced costs for hospitalized patients with one of six common diagnoses?’ Second, ‘Can we identify other factors that are determinants of improved health outcomes for such hospitalized patients but which are not associated with costs?’ The Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) database from 2003 to 2006 was employed in this study. The total study sample consisted of hospitals which had at least 30 patients each year for the given diagnosis: 954 hospitals for acute myocardial infarction (AMI), 1552 hospitals for congestive heart failure (CHF), 1120 hospitals for stroke (STR), 1283 hospitals for gastrointestinal hemorrhage (GIH), 979 hospitals for hip fracture (HIP), and 1716 hospitals for pneumonia (PNE). This study used simultaneous equations models to investigate the determinants of improvement in health outcomes and of cost reduction in hospital inpatient care for these six common diagnoses. In addition, the study used instrumental variables and two-stage least squares random effect model for unbalanced panel data estimation. The study concluded that a few factors were determinants of high quality and low cost. Specifically, high specialty was the determinant of high quality and low costs for CHF patients; small hospital size was the determinant of high quality and low costs for AMI patients. Furthermore, CHF patients who were treated in Midwest, South, and West region hospitals had better health outcomes and lower hospital costs than patients who were treated in Northeast region hospitals. Gastrointestinal hemorrhage and pneumonia patients who were treated in South region hospitals also had better health outcomes and lower hospital costs than patients who were treated in Northeast region hospitals. This study found that six non-cost factors were related to health outcomes for a few diagnoses: hospital volume, percentage emergency room admissions for a given diagnosis, hospital competition, specialty, bed size, and hospital region.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similar to other health care processes, referrals are susceptible to breakdowns. These breakdowns in the referral process can lead to poor continuity of care, slow diagnostic processes, delays and repetition of tests, patient and provider dissatisfaction, and can lead to a loss of confidence in providers. These facts and the necessity for a deeper understanding of referrals in healthcare served as the motivation to conduct a comprehensive study of referrals. The research began with the real problem and need to understand referral communication as a mean to improve patient care. Despite previous efforts to explain referrals and the dynamics and interrelations of the variables that influence referrals there is not a common, contemporary, and accepted definition of what a referral is in the health care context. The research agenda was guided by the need to explore referrals as an abstract concept by: 1) developing a conceptual definition of referrals, and 2) developing a model of referrals, to finally propose a 3) comprehensive research framework. This dissertation has resulted in a standard conceptual definition of referrals and a model of referrals. In addition a mixed-method framework to evaluate referrals was proposed, and finally a data driven model was developed to predict whether a referral would be approved or denied by a specialty service. The three manuscripts included in this dissertation present the basis for studying and assessing referrals using a common framework that should allow an easier comparative research agenda to improve referrals taking into account the context where referrals occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary interest was in predicting the distribution runs in a sequence of Bernoulli trials. Difference equation techniques were used to express the number of runs of a given length k in n trials under three assumptions (1) no runs of length greater than k, (2) no runs of length less than k, (3) no other assumptions about the length of runs. Generating functions were utilized to obtain the distributions of the future number of runs, future number of minimum run lengths and future number of the maximum run lengths unconditional on the number of successes and failures in the Bernoulli sequence. When applying the model to Texas hydrology data, the model provided an adequate fit for the data in eight of the ten regions. Suggested health applications of this approach to run theory are provided. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general model for the illness-death stochastic process with covariates has been developed for the analysis of survival data. This model incorporates important baseline and time-dependent covariates to make proper adjustment for the transition probabilities and survival probabilities. The follow-up period is subdivided into small intervals and a constant hazard is assumed for each interval. An approximation formula is derived to estimate the transition parameters when the exact transition time is unknown.^ The method developed is illustrated by using data from a study on the prevention of the recurrence of a myocardial infarction and subsequent mortality, the Beta-Blocker Heart Attack Trial (BHAT). This method provides an analytical approach which simultaneously includes provision for both fatal and nonfatal events in the model. According to this analysis, the effectiveness of the treatment can be compared between the Placebo and Propranolol treatment groups with respect to fatal and nonfatal events. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-center clinical trials are very common in the development of new drugs and devices. One concern in such trials, is the effect of individual investigational sites enrolling small numbers of patients on the overall result. Can the presence of small centers cause an ineffective treatment to appear effective when treatment-by-center interaction is not statistically significant?^ In this research, simulations are used to study the effect that centers enrolling few patients may have on the analysis of clinical trial data. A multi-center clinical trial with 20 sites is simulated to investigate the effect of a new treatment in comparison to a placebo treatment. Twelve of these 20 investigational sites are considered small, each enrolling less than four patients per treatment group. Three clinical trials are simulated with sample sizes of 100, 170 and 300. The simulated data is generated with various characteristics, one in which treatment should be considered effective and another where treatment is not effective. Qualitative interactions are also produced within the small sites to further investigate the effect of small centers under various conditions.^ Standard analysis of variance methods and the "sometimes-pool" testing procedure are applied to the simulated data. One model investigates treatment and center effect and treatment-by-center interaction. Another model investigates treatment effect alone. These analyses are used to determine the power to detect treatment-by-center interactions, and the probability of type I error.^ We find it is difficult to detect treatment-by-center interactions when only a few investigational sites enrolling a limited number of patients participate in the interaction. However, we find no increased risk of type I error in these situations. In a pooled analysis, when the treatment is not effective, the probability of finding a significant treatment effect in the absence of significant treatment-by-center interaction is well within standard limits of type I error. ^