4 resultados para PVP, Microneedles, Ocular, Drug Delivery

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pulmonary route has been traditionally used to treat diseases of the respiratory tract. However, important research within the last two decades have shown that in addition to treating local diseases, a wide range of systemic diseases can be treated by delivering drugs to the lungs. The recent FDA approval to market Exubera, an inhalable form of insulin developed by Pfizer, to treat Diabetes, may just be the stepping stone that the pharmaceutical industry needs to market other drugs to treat systemic diseases via the lungs. However, this technology still needs repeated drug doses to control glucose levels, as the inhaled drug is cleared rapidly. Technologies have been developed where inhaled particles are capable of controlled release of drug from the lungs. An important feature of these technologies is the large geometric size of the particles that makes it difficult for the lung macrophages to clear these particles, which results in longer residence times for the particles in the lungs. Owing to the porosity, these particles have lower densities making them deliverable to the deep lungs. However, no modulation of drug release can be achieved with these technologies when more drug release may be required. This additional requirement can only be assuaged by additional dosing of the drug formulation, which can have undesirable effects due to excess loading of excipients in the lungs. In an attempt to bring about modulation of release from long residence time particles, a novel concept was developed in our laboratory that has been termed as the Agglomerated Vesicle Technology (AVT). Liposomes with encapsulated drug were agglomerated using well known cross linking chemistries to form agglomerates in the micron sized range. The large particles exhibited aerodynamic sizes in the respirable size range with minimal damage to the particles upon nebulization. By breaking the cross links between the liposomes with a cleaving agent, it was anticipated that triggered release of drug from the AVT particles could be achieved. In vivo studies done in healthy rabbits showed that post-administration modulation of drug release is possible from the AVT particles after the introduction of the cleaving agent. This study has important implications for the future development of this technology, where the AVT particles can be made “sensitive” to the product of disease. It is envisaged that a single dose of AVT containing the appropriate drug when administered to the lungs would maintain drug levels at a controlled rate over an extended period of time. When the need for more drug arises, the product of the disease would trigger the AVT particles to release more drug as needed to control the condition, thus eliminating the need for repeated drug doses and improved compliance amongst patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while decreasing exposure to normal tissues. E-selectin is constitutively expressed on the bone marrow vasculature, but almost absent in normal vessels, and therefore, E-selectin targeted drug delivery presents an ideal strategy for the delivery of therapeutic nanoparticles to the bone marrow. The objective of this study was to develop a novel bone marrow targeted multistage vector (MSV) via E-selectin for delivery of therapeutics and imaging agents. To achieve this goal, Firstly, an E-selectin thioaptamer (ESTA) ligand was identified through a two-step screening from a combinatorial thioaptamer library. Next, ESTA-conjugated MSV (ESTA-MSV) were developed and evaluated for their stability and binding to E-selectin expressing endothelial cells. Different types of nanoparticles including liposomes, quantum dots, and iron oxide nanoparticles were loaded into the porous structure of ESTA-MSV. In vivo targeting experiments demonstrated 8-fold higher accumulation of ESTA-MSV in the mouse bone marrow as compared to non-targeted MSV Furthermore, intravenous injection of liposomes loaded ESTA-MSV resulted in a significantly higher accumulation of liposome in the bone marrow space as compared to injection of non-targeted MSV or liposomes alone. Overall this study provides first evidence that E-selectin targeted multistage vector preferentially targets to bone marrow vasculature and delivers larger amounts of nanoparticles. This delivery strategy holds potential for the selective delivery of large amounts of therapeutic payload to the vascular niches in the bone marrow for the treatment of bone marrow associated diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 1.2 million Americans are currently living with a traumatic spinal cord injury (SCI). Despite the need for effective therapies, there are currently no proven effective treatments that can improve recovery of function in SCI patients. Many therapeutic compounds have shown promise in preclinical models of SCI, but all of these have fallen short in clinical trials. P-glycoprotein (Pgp) is an active transporter expressed on capillary endothelial cell membranes at the blood-spinal cord barrier (BSCB). Pgp limits passive diffusion of blood-borne drugs into the CNS, by actively extruding drugs from the endothelial cell membrane. Pgp can become pathologically up-regulated, thus greatly impeding therapeutic drug delivery (‘multidrug resistance’). Importantly, many drugs that have been evaluated for the treatment of SCI are Pgp substrates. We hypothesized that Pgp-mediated drug resistance diminishes the delivery and efficacy of neuroprotective drugs following SCI. We observed a progressive, spatial spread of Pgp overexpression within the injured spinal cord. To assess Pgp function, we examined spinal cord uptake of systemically-delivered riluzole, a drug that is currently being evaluated in clinical trials as an SCI intervention. Blood-to-spinal cord riluzole penetration was reduced following SCI in wild-type but not Pgp-null rats, highlighting a critical role for Pgp in mediating spinal cord drug resistance after injury. Others have shown that pro-inflammatory signaling drives Pgp up-regulation in cancer and epilepsy. We have detected inflammation in both acutely- and chronically-injured spinal cord tissue. We therefore evaluated the ability of the dual COX-/5-LOX inhibitor licofelone to attenuate Pgp-mediated drug resistance following SCI. Licofelone treatment both reduced spinal cord Pgp levels and enhanced spinal cord riluzole bioavailability following SCI. Thus, we propose that licofelone may offer a new combinatorial treatment strategy to enhance spinal cord drug delivery following SCI. Additionally, we assessed the ability of licofelone, riluzole, or both to enhance recovery of locomotor function following SCI. We found that licofelone treatment conferred a significant improvement in hindlimb function that was sustained through the end of the study. In contrast, riluzole did not improve functional outcome. We therefore conclude that licofelone holds promise as a potential neuroprotective intervention for SCI.