19 resultados para PROTECTS

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae. To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the circulatory dynamics of hemocytes and the methods by which they accumulate at epidermal wounds. We found that circulating hemocytes attach to wound sites directly from circulation, a mechanism once thought to work exclusively in species with a closed circulatory system. To study damage-induced pain hypersensitivity, we developed a “sunburn assay” and found that larvae have a lowered pain threshold (allodynia) and an exaggerated response to noxious stimuli (hyperalgesia) following UV damage. We screened for genes required for hypersensitivity in pain receptors (nociceptors), and discovered a number of novel mediators that have well conserved mammalian homologs. Together, these results help us to understand how various cell types in the immune and nervous systems both detect and respond to tissue damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusion of nonmetastatic murine melanoma K1735 C19H cells with metastatic human melanoma A375 C15N cells resulted in a hybrid (termed H7) which was highly metastatic in a nude mouse model. The H7 hybrid retained chromosome 17 as the sole intact human chromosome in the cell. A lung bioassay showed that the K1735 C19H cells were present in the lungs of nude mice with s.c. tumors, yet at 6-weeks after tumor resection, no cells remained in the lung and therefore did not form lung metastases. Examination of various phenotypic properties such as in vivo and in vitro growth demonstrated that phenotypically the H7 hybrid was most like the K1735 C19H cell line except for its metastatic ability. In contrast the H7 hybrid cells containing single or multiple copies of human chromosome 17 with a point mutation at codon 249 (arg-gly) of the p53 gene, readily formed lung metastases. A plasmid containing the human p53 from the H7 hybrid and four other contructs with mutations at codon 143 (val-arg), 175 (arg-his), 249 (arg-ser) and 273 (arg-his) were transfected into K1735 C19H cells. K1735 C19H cells expressing human p53 genes with mutations at codons 249, both the arg-ser mutation and the mutation from the H7 hybrid and 273 produced significantly more lung metastases.^ In vitro assays demonstrated that responses to various cytotoxic and DNA damaging agents varied with the presence of mutant p53 and with the type of agent used. When cultured in mouse lung-conditioned medium, the K1735 C19H cell line was growth-inhibited, while cells containing a mutant human p53 (either on the whole chromosome 17, as in the H7 hybrid cells or from a stably transfected construct) were growth stimulated. Western blot analysis of lung-conditioned media derived from either 6-month or 15-month old mice has detected high levels of soluble Fas ligand in the medium from older animals. Comparison of the levels of Fas receptor on the K1735 C19H cell line and the H7 hybrid were almost identical, but 50% of the K1735 C19H cells were killed in the presence of anti-Fas antibody as opposed to 7% of the H7 hybrid cells. The growth-inhibitory effects of the lung-conditioned medium on the K1735 C19H cells were abrogated by coculture with Fas-Fc, which competes with the Fas ligand for receptor binding. Growth-inhibition of the K1735 C19H was 54% when cultured in 60 $\mu$g/0.2 ml lung-conditioned medium and a control Fc, with only 9% inhibition in 60 $\mu$g/0.2 ml lung-conditioned medium and Fas-Fc. Growth of the H7 cells and K1735 C19H cells transfected with various mutant human p53 genes were unchanged by the presence of either the control Fc or the Fas-Fc. This indicates that the presence of human chromosome 17, and mutant p53 in part protects the cells from Fas:Fas ligand induced apoptosis, and allows the growth of lung metastases. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 6,600 people die from acute myelogenous leukemia (AML) on an annual basis. During the past 10 to 15 years, there has been gradual overall improvements in the therapy of this disease, yet the majority of patients with AML succumb to this disease. In an attempt to improve current therapeutic strategies for AML, we became interested in a commercially available drug, dexrazoxane, which protects against anthracycline-induced cardiotoxicity. We have investigated dexrazoxane's (DEX) effects on different tissue types in an effort to determine its unique mechanism of action. Colony forming assays were used to evaluate stem-cell renewal of myeloid cells in vitro and median effect analysis was used to evaluate antagonism, synergism, or additivity. The anthracyclines, doxorubicin, daunorubicin, and idarubicin were individually combined with DEX in leukemic myeloid models to determine if the combination of the two drugs resulted in a synergistic, additive or antagonistic effect. Etoposide and cytosine arabinoside were also evaluated in combination with DEX using the same in vitro model and evaluated similarly. ^ Dexrazoxane in combination with any of the anthracyclines was schedule dependent. The combination of DEX and anthracycline resulted in a greater antitumor effect than anthracycline alone except for DEX administered 24 hours before doxorubicin or daunorubicin. These data were corroborated through median effect analysis. Etoposide in combination with dexrazoxane was synergistic for all combinations, and the combination of cytosine arabinoside and DEX was schedule dependent. In contrast, using an in vivo gastrointestinal model, DEX in combination with doxorubicin was antagonistic for almost all of the ratios used, except for the highest. A Withers' assay was used to evaluate toxicity on jejunal crypt cells. No effect was apparent for the combination of idarubicin and DEX, however, as seen with RZ, DEX in addition to radiation greatly potentiated the cytotoxic effects of radiation on crypts. These paradoxical effects of dexrazoxane were initially enigmatic, but after additional investigation, we propose a model that explains our findings. We conclude that DEX in combination with anthracyclines produces an additive to synergistic antileukemic response and may have therapeutic potential clinically. Additionally, DEX protects the gastrointestinal tract from doxorubicin toxicity, which could have clinical implications for the administration of greater doses of doxorubicin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin cancer is the most common malignancy in humans. Although highly treatable, non-melanoma skin cancer is commonly followed by other non-cutaneous malignancies. Ultraviolet radiation (UVR) acts as both tumor initiator and promoter, and also results in the suppression of specific immune responses. The systemic suppression of immune responses is initiated by DNA damage, which promotes IL-10 production, an important cytokine as anti-IL-10 can abrogate the suppression, and upregulates the pro-apoptotic proteins Fas and Fas ligand (FasL). FasL is a critical factor for UV-induced immune suppression, and the suppressor cell induced by UV expresses FasL. ^ We hypothesized that the microenvironment affects Fas/FasL interactions, and that these interactions are important to the phenomenon of UV induced immune suppression. To determine the effects of the interaction of FasL and IL-10, splenocytes isolated from C57Bl/6 mice were cultured in the presence or absence of IL-10 post-mitogenic activation. We determined that IL-10 protects from Fas-mediated apoptosis by lowering Fas sensitivity and lowering the levels of either Fas or FasL. This protection is stronger when IL-10 is given immediately after mitogenic activation, and does not increase any of the inhibitors of apoptosis studied. In vivo, splenocytes from UV-irradiated mice are resistant to Fas-mediated apoptosis and present very high levels of IL-10, lowered Fas sensitivity and lowered caspase cleavage despite higher expression of Fas and FasL than non-irradiated mice. ^ UV-induced immune suppression affects female mice preferentially, which led us to look at prolactin as a possible component of this suppression since this hormone has also been associated with increased skin carcinogenesis. The interaction of FasL and prolactin results in suppression of the delayed type hypersensitivity response to Candida albicans. This lack of response depends on FasL as is not seen in gld mice. Similar to UV-induced immune suppression, the suppression is caused by a Th2 deviation, and correlates with a significant increase in Fas expression. In the presence of UV, the effects of prolactin seemed to be protective, and UV actually restores the DTH response.^ Taken together, these observations suggest that the microenvironment dictates the outcome of the interaction of FasL with Fas going from promoting apoptosis to preventing apoptosis or mediating a Th2 deviation and suppression of a Th1 response. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene silencing due to promoter methylation is an alternative to mutations and deletions, which inactivate tumor suppressor genes (TSG) in cancer. We identified RIL by Methylated CpG Island Amplification technique as a novel aberrantly methylated gene. RIL is expressed in normal tissues and maps to the 5q31 region, frequently deleted in leukemias. We found methylation of RIL in 55/80 (69%) cancer cell lines, with highest methylation in leukemia and colon. We also observed methylation in 46/80 (58%) primary tumors, whereas normal tissues showed substantially lower degrees of methylation. RIL expression was lost in 13/16 cancer cell lines and was restored by demethylating agent. Screening of 38 cell lines and 13 primary cancers by SSCP revealed no mutations in RIL, suggesting that methylation and LOH are the primary inactivation mechanisms. Stable transfection of RIL into colorectal cancer cells resulted in reduction in cell growth, clonogenicity, and increased apoptosis upon UVC treatment, suggesting that RIL is a good candidate TSG. ^ In searching for a cause of RIL hypermethylation, we identified a 12-bp polymorphic sequence around the transcription start site of the gene that creates a long allele containing 3CTC repeat. Evolutionary studies suggested that the long allele appeared late in evolution due to insertion. Using bisulfite sequencing, in cancers heterozygous for RIL, we found that the short allele is 4.4-fold more methylated than the long allele (P = 0.003). EMSA results suggested binding of factor(s) to the inserted region of the long allele, but not to the short. EMSA mutagenesis and competition studies, as well as supershifts using nuclear extracts or recombinant Sp1 strongly indicated that those DNA binding proteins are Sp1 and Sp3. Transient transfections of RIL allele-specific expression constructs showed less than 2-fold differences in luciferase activity, suggesting no major effects of the additional Sp1 site on transcription. However, stable transfection resulted in 3-fold lower levels of transcription from the short allele 60 days post-transfection, consistent with the concept that the polymorphic Sp1 site protects against time-dependent silencing. Thus, an insertional polymorphism in the RIL promoter creates an additional Sp1/Sp3 site, which appears to protect it from silencing and methylation in cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor suppressor p16 is a negative regulator of the cell cycle, and acts by preventing the phosphorylation of RB, which in turn prevents the progression from G1 to S phase of the cell cycle. In addition to its role in the cell cycle, p16 may also be able to induce apoptosis in some tumors. Ewing's sarcoma, a pediatric cancer of the bone and soft tissue, was used to study the ability of p16 to induce apoptosis due to the fact that p16 is often deleted in Ewing's sarcoma tumors and may play a role in the oncogenesis or progression of this disease. The purpose of these studies was to determine whether introduction of p16 into Ewing's sarcoma cells would induce apoptosis. We infected the Ewing's sarcoma cell line TC71, which does not express p16, with adenovirus- p16 (Ad-p16). Ad-p16 infection led to the production of functional p16 as measured by the induction of G1 arrest. Ad-p16 infection induced as much as a 100% increase in G1 arrest compared to untreated cells. As measured by propidium iodide (PI) and Annexin V staining, Ad-p16 was able to induce apoptosis to levels 20–30 fold higher than controls. Furthermore, Ad-p16 infection led to loss of RB protein before apoptosis could be detected. The loss of RB protein was due to post-translational degradation of RB, which was inhibited by the addition of the proteasome inhibitors PS-341 and NPI-0052. Downregulation of RB with si-RNA sensitized cells to Ad-p16-induced apoptosis, indicating that RB protects from apoptosis in this model. This study shows that p16 leads to the degradation of RB by the ubiquitin/proteasome pathway, and that this degradation may be important for the induction of apoptosis. Given that RB may protect from apoptosis in some tumors, apoptosis-inducing therapies may be enhanced in tumors which have lost RB expression, or in which RB is artificially inactivated. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. In June 2006, the first vaccine for human papillomavirus (HPV) was approved by the FDA and shortly after approval, the Advisory Committee on Immunization Practices (ACIP) voted to recommend the HPV vaccine for young girls. As a result of ACIP recommendations, state legislators introduced bills to mandate the vaccine. Policies related to public health issues, such as vaccination mandates, are often influenced by news coverage of these issues. News media, particularly in times of controversies, reinforce specific messages and plays an essential role in framing issues for the public. The objective of this study is to examine the quality, content, and scope of policies for the HPV vaccine before and after Texas Governor Rick Perry issued an executive order mandating the vaccine for middle school girls.^ Methods. The Lexis-Nexis database was used to identify 335 articles on HPV vaccination mandate policies that were published in U.S. newspapers from February 1, 2006 to February 2, 2008. The coding instrument captured information about article type, main news story concern, general information about HPV, HPV vaccine mandate policies, arguments for and against HPV vaccination mandates, arguments for and against the HPV vaccine, and sources of information.^ Results. Most news articles (82.4%) occurred after Governor Rick Perry issued an executive order mandating the HPV vaccine. Most articles mentioned that HPV is sexually transmitted (90.7%) and linked HPV infection to cervical cancer (96.1%). Only 63.9% of the articles reported that the HPV vaccine protects against types of HPV that cause cervical cancer and 18.8% of the articles reported that the vaccine protects against genital warts. Only 18.2% of the news articles presented a balanced argument regarding mandatory HPV vaccinations, and only 39.4% of the news articles presented a balanced argument for the HPV vaccine.^ Conclusions. Our study revealed that news coverage regarding mandating the HPV vaccine and issues related to the vaccine itself is biased, unbalanced, and incomplete. Since the public pays a great deal of attention to health in the media, it is essential that news stories are balanced, complete, and accurate. In order to ensure that future vaccination mandates are not covered in the same way the HPV vaccination was, public health officials, health care providers and scientists should work effectively with the media to ensure that balanced information is provided.^