13 resultados para PLACENTAL AROMATASE DEFICIENCY

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human placental lactogen (hPL) is a 22,000 dalton protein hormone produced in the placenta. The physiological actions of hPL are not well understood but its major activity is to regulate both maternal and fetal metabolism. hPL stimulates maternal lipolysis increasing free fatty acids in the maternal blood, allowing their use as an energy source by the mother, and sparing glucose for the fetus. It may also act as a growth promoting hormone for the fetus. hPL is produced in increasing amounts as pregnancy progresses. At term, hPL accounts for 10% of protein and 5% of total RNA in the placenta. This high level of hPL production is tissue-specific, as hPL is only produced in the placenta by syncytiotrophoblast cells.^ The objective of this work was to understand the mechanism by which such high levels of hPL are produced in a tissue-specific manner. A transcriptional enhancer found 2.2 kb 3$\sp\prime$ to one of the hPL genes (hPL$\sb3$) may explain the regulation of hPL expression. Transient transfection experiments using the hPL-producing human choriocarcinoma cell line JEG-3 localized the hPL enhancer to a 138 bp core element. This 138 bp sequence was found to be tissue specific in its actions as it did not promote transcription in heterologous cell lines. Gel mobility shift assays showed the hPL enhancer interacts specifically with nuclear proteins unique to hPL-producing cells. Within the 138 bp enhancer a 22 bp region was shown to be protected from DNase I digestion due to binding of proteins derived from placental nuclear extracts. Proteins binding this region of the enhancer may be instrumental in the tissue specific activity of the hPL enhancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The placenta is the site of synthesis of various peptide and steroid hormones related to pregnancy. Human placental lactogen (hPL) is the predominant peptide hormone secreted by term placenta and its synthesis is tissue-specific and coupled to placenta development. The objective of this work was to study the structure and expression of the hPL.^ Poly(A('+))RNA from human term placenta was translated in a mouse-derived cell-free system. A major band corresponding to pre-hPL and a minor band comigrating with mature hPL, represent (TURN)15% of the total radioactively labeled proteins. Analysis of the poly(A('+))RNA showed a prominent band at approximately 860 nucleotides. A corresponding band was observed in Northern blots of total RNA, hybridized with {('32)P}-labeled recombinant plasmid containing a portion of hPL cDNA. Similar analyses of nuclear RNA showed at least four additional bands at 990, 1200, 1460 and 1760 nucleotides, respectively, which are likely precursors of hPL mRNA. Poly(A('+))RNA was used to construct a cDNA library, of which approximately 5% of the clones were found to hybridize to hPL DNA sequences. Heteroduplexes constructed between a clone containing a 815 bp hPL cDNA insert and a hPL genomic DNA clone revealed four small intervening sequences which can account for the lengths observed in hnRNA molecules.^ Recombinant plasmid HCS-pBR322 containing a 550 bp insert of a cDNA transcript of human placental lactogen (hPL) mRNA was ('3)H-labeled an hybridized in situ to human chromosome preparations. These experiments allowed assignment of the hPL and growth hormone (hGH) genes, which have over 90% nucleotide homology in their coding sequences, to band q22-24 of chromosome 17. A gene copy number experiment showed that both genes are present in (TURN)3 copies per haploid genome.^ Experiments were designed to determine if all members of the hPL gene cluster, consisting of four non-allelic genes, are transcribed in term placenta. Advantage was taken of differences in restriction endonuclease sites in the coding portions of the different hPL genes, to distinguish the putative cDNAs of the transcriptionally active genes. Two genes were found to be represented in the cDNA library and their cDNA transcripts were isolated and characterized. Three independent methods showed that their corresponding mRNAs are about equally represented in the hPL mRNA population. The two cDNAs code for prehPL proteins which differ at a single amino acid position. However the secreted hPLs have identical amino acid sequences. A tetramer insertion duplication was found in a palindrome area of the 3' untranslated region of one of the hPL mRNAs. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin D is essential in maintaining the bone health and Calcium homeostasis in the body. These actions are mediated through the Vitamin D receptors (VDR) present in cells through which the activated vitamin D acts [1]. In the past, it was known that these receptors existed in the intestine and bone cell. However, recent discovery of VDR in other tissues as well, has broadened the action of Vitamin D and increased its adequate intake [1].^ In the past, Vitamin D deficiency was most common among institutionalized, elderly patients and children and thought to be extinct in the healthy population. However, recent evidence has shown that, prevalence of vitamin D deficiency is increasing into an epidemic status in the overall population of the United States, including the healthy individuals [2-3]. The increased daily-recommended requirement and other multiple factors are responsible for the re-emergence of this epidemic [4-5]. Some of these factors could be used to control the epidemic. Studies have also shown the association between vitamin D deficiency and increased risk for developing chronic diseases such as diabetes, hypertension, multiple sclerosis, arthritis, and some fatal cancers like prostate, colon and breast cancers [1, 4, 6-14]. This issue results in increased disease burden, morbidity and mortality in the community [15-20].^ Methods: The literature search was conducted using the University of Texas Health Science Center at Houston (UTHSC) and University of Texas Southwestern Medical Center (UTSW) online library. The key search terms used are “vitamin D deficiency And prevalence Or epidemiology”, “vitamin D deficiency And implication And public health” using PubMed and Mesh database and “vitamin D deficiency” using systematic reviews. The search is limited to Humans and the English language. The articles considered for the review are limited to Healthy US population to avoid health conditions that predispose the population to vitamin D deficiency. Only US population is considered to narrow down the study.^ Results: There is an increased prevalence of low levels of Vitamin D levels below the normal range in the US population regardless of age and health status. Vitamin D deficiency is also associated with increased risk of chronic illnesses and fatal cancers.^ Conclusion: This increased prevalence and the association of the deficiency with increased all-cause mortality has increased the economic burden and compromised the quality of life among the population. This necessitates the health care providers to routinely screen their patients for the Vitamin D status and counsel them to avoid the harmful effects of the Vitamin D deficiency. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops and tests through path analysis a theoretical model to explain how socioeconomic, socioenvironmental, and biologic risk factors simultaneously influence each other to further produce short-term, depressed growth in preschoolers. Three areas of risk factors were identified: child's proximal environment, maturational stage, and biological vulnerability. The theoretical model represented both the conceptual framework and the nature and direction of the hypotheses. Original research completed in 1978-80 and in 1982 provided the background data. It was analyzed first by nested-analysis of variance, followed by path analysis. The study provided evidence of mild iron deficiency and gastrointestinal symptomatology in the etiology of depressed, short-term weight gain. Also, there was evidence suggesting that family resources for material and social survival significantly contribute to the variability of short-term, age-adjusted growth velocity. These results challenge current views of unifocal intervention, whether for prevention or control. For policy formulations, though, the mechanisms underlying any set of interlaced relationships must be decoded. Theoretical formulations here proposed should be reassessed under a more extensive research design. It is suggested that studies should be undertaken where social changes are actually in progress; otherwise, nutritional epidemiology in developing countries operates somewhere between social reality and research concepts, with little grasp of its real potential. The study stresses that there is a connection between substantive theory, empirical observation, and policy issues. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to determine the nature of the relationship between severity of iron deficiency anemia, response to iron treatment, respiratory and gastrointestinal illness and weight change. Seventy-five pre-school children from rural Guatemala received daily oral iron therapy for an eleven week period, and were classified into one of three groups having different degrees of iron deficiency anemia. Anthropometric and biochemical data were collected prior and after iron treatment; morbidity data were collected throughout the period of treatment. The outcome variables were percentage weight change, percentage of total days ill with any type of symptom, percentage of total days ill with gastrointestinal symptoms, percentage of total days ill with respiratory symptoms, percentage of total days ill with combination syndrome symptoms. Age, sex and socio-economic status, were independent of any of the independent or outcome variables used. On the other hand, the level of hemoglobin covaried with the height of the children, the smallest children were the most severely anemic. The relationships between hemoglobin levels and weight change, frequency of morbidity (gastrointestinal, respiratory and combination syndrome) and total number of days ill with any symptomatology were investigated. No statistical significance was found in these analyses except when contrasting children with normal hemoglobin levels to iron deficient children, where the findings indicated the normal children experienced more gastrointestinal morbidity. The same relationship were again analyzed but including delta hemoglobin as covariate in the analysis, this latter one was found to be significant at 7% when the percentage of days ill from gastrointestinal morbidity was tested against the hemoglobin groups. The relationship found indicates that, all other covariates accounted for, the percentage of days ill from gastrointestinal morbidity will decrease approximately 1% for each 1% increase in delta of hemoglobin. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis a mouse model was used to examine the effect of pubertal estrogen inhibition and a phytoestrogen-free diet on the development of mammary glands. The study question was does treatment with aromatase inhibitor during puberty increase susceptibility to breast cancer among cohorts that consumed a diet free of phytoestrogens. The study design consisted of a cohort of mice treated with aromatase inhibitor, letrozole, during puberty and a vehicular group that was used as a control. Both groups were fed a diet free of phytoestrogens from the time of weaning until sacrifice during adulthood. The study aimed to assess mammary gland development in terms of breast cancer risk. The methods employed in this research included morphological and histological analysis of mammary glands, as well as estradiol, RNA and protein analysis. The main finding of the study was that mice exposed to aromatase inhibitor during puberty developed mammary glands with specific characteristics suggestive of vulnerability to oncogenesis such as increased lateral branching, increased number of glands, increase ductal hyperplasia, and diminished expression of TGFβ and p27 protein levels. The conclusions suggest that puberty is a critical period in which the mammary gland is susceptible to environmental threats that may result in deleterious epigenetic effects leading to an increased breast cancer risk in adulthood. This study has several public health implications; the most significant is that environmental threats during puberty may result in adverse mammary gland development and that phytoestrogen sources in the diet are necessary for normal maturation of the mammary glands.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.