6 resultados para PHARMACEUTICAL RESIDUES

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

POLN is a nuclear A-family DNA polymerase encoded in vertebrate genomes. POLN has unusual fidelity and DNA lesion bypass properties, including strong strand displacement activity, low fidelity favoring incorporation of T for template G and accurate translesion synthesis past a 5S-thymine glycol (5S-Tg). We searched for conserved features of the polymerase domain that distinguish it from prokaryotic pol I-type DNA polymerases. A Lys residue (679 in human POLN) of particular interest was identified in the conserved 'O-helix' of motif 4 in the fingers sub-domain. The corresponding residue is one of the most important for controlling fidelity of prokaryotic pol I and is a nonpolar Ala or Thr in those enzymes. Kinetic measurements show that K679A or K679T POLN mutant DNA polymerases have full activity on nondamaged templates, but poorly incorporate T opposite template G and do not bypass 5S-Tg efficiently. We also found that a conserved Tyr residue in the same motif not only affects sensitivity to dideoxynucleotides, but also greatly influences enzyme activity, fidelity and bypass. Protein sequence alignment reveals that POLN has three specific insertions in the DNA polymerase domain. The results demonstrate that residues have been strictly retained during evolution that confer unique bypass and fidelity properties on POLN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215-Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200-Thr and Val-210-Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinal's photoisomerized C(13)=C(14) double bond to residues in the membrane-embedded alpha-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRII's hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of pharmaceutical care is identified through a complete review of the literature published in the American Journal of Health-System Pharmacy, the sole comprehensive publication of institutional pharmacy practice. The evolution is categorized according to characteristics of structure (organizational structure, the role of the pharmacist), process (drug delivery systems, formulary management, acquiring drug products, methods to impact drug therapy decisions), and outcomes (cost of drug delivery, cost of drug acquisition and use, improved safety, improved health outcomes) recorded from the 1950s through the 1990s. While significant progress has been made in implementing basic drug distribution systems, levels of pharmacy involvement with direct patient care is still limited.^ A new practice framework suggests enhanced direct patient care involvement through increase in the efficiency and effectiveness of traditional pharmacy services. Recommendations advance internal and external organizational structure relationships that position pharmacists to fully use their unique skills and knowledge to impact drug therapy decisions and outcomes. Specific strategies facilitate expansion of the breadth and scope of each process component in order to expand the depth of integration of pharmacy and pharmaceutical care within the broad healthcare environment. Economic evaluation methods formally evaluate the impact of both operational and clinical interventions.^ Outcome measurements include specific recommendations and methods to increase efficiency of drug acquisition, emphasizing pharmacists' roles that impact physician prescribing decisions. Effectiveness measures include those that improve safety of drug distribution systems, decrease the potential of adverse drug therapy events, and demonstrate that pharmaceutical care can significantly contribute to improvement in overall health status.^ The implementation of the new framework is modeled on a case study at the M.D. Anderson Cancer Center. The implementation of several new drug distribution methods facilitated the redeployment of personnel from distributive functions to direct patient care activities with significant personnel and drug cost reduction. A cost-benefit analysis illustrates that framework process enhancements produced a benefit-to-cost ratio of 7.9. In addition, measures of effectiveness demonstrated significant levels of safety and enhanced drug therapy outcomes. ^

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Pharmaceutical-sponsored patient assistance programs (PAPs) are charity programs that provide free or reduced-priced medications to eligible patients. PAPs have the potential to improve prescription drug accessibility for patients but currently there is limited information about their use and effectiveness. ^ Objectives and methods. This dissertation described the use of PAPs in the U.S. through the conduct of two studies: (1) a systematic review of primary studies of PAPs from commercially-published and “grey” literature sources; and (2) a retrospective, cross-sectional study of cancer patients' use of PAPs at a tertiary care cancer outpatient center. ^ Results. (1) The systematic review identified 33 studies: 15 evaluated the impact of PAP enrollment assistance programs on patient healthcare outcomes; 7 assessed institutional costs of providing enrollment assistance; 7 surveyed stakeholders; 4 examined other aspects. Standardized mean differences calculated for disease indicator outcomes (most of which were single group, pre-posttest designs) showed significant decreases in glycemic and lipid control, and inconsistent results for blood pressure. Grey literature abstracts reported insufficient statistics for calculations. Study heterogeneity made weighted summary estimates inappropriate. Economic analyses indicated positive financial benefits to institutions providing enrollment assistance (cost) compared to the wholesale value of the medications provided (benefit); analyses did not value health outcomes. Mean quality of reporting scores were higher for observational studies in commercially-published articles versus full text, grey literature reports. (2) The cross-sectional study found that PAP outpatients were significantly more likely to be uninsured, indigent, and < 65 years old than non-PAP patients. Nearly all non-PAP and PAP prescriptions were for non-cancer conditions, either for co-morbidities (e.g., hypertension) or the management of treatment side effects (e.g., pain). Oral chemotherapies from PAPs were significantly more likely to be for breast versus other cancers, and be a newer, targeted versus traditional chemotherapy.^ Conclusions. In outpatient settings, PAP enrollment assistance plus additional medication services (e.g., counseling, reminders, and free samples) is associated with improved disease indicators for patients. Healthcare institutions, including cancer centers, can offset financial losses from uncompensated drug costs and recoup costs invested in enrollment assistance programs by procuring free PAP medications. Cancer patients who are indigent and uninsured may be able to access more outpatient medications for their supportive care needs through PAPs, than for cancer treatment options like oral chemotherapies. Because of the selective availability of drugs through PAPs, there may be more options for newer, oral, targeted chemotherapies for the treatment breast cancer versus other for other cancers.^