33 resultados para PANCREATIC NECROSIS

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF family of cytokines that induces apoptosis in a variety of tumor cells while sparing normal cells. However, many human cancer cell lines display resistance to TRAIL-induced apoptosis and the mechanisms contributing to resistance remain controversial. Previous studies have demonstrated that the dimeric transcription factor Nuclear Factor kappa B (NFκB) is constitutively active in a majority of human pancreatic cancer cell lines and primary tumors, and although its role in tumor progression remains unclear it has been suggested that NFκB contributes to TRAIL resistance. Based on this, I examined the effects of NFκB inhibitors on TRAIL sensitivity in a panel of nine pancreatic cancer cell lines. I show here that inhibitors of NFκB, including two inhibitors of the proteasome (bortezomib (Velcade™, PS-341) and NPI-0052), a small molecule inhibitor of IKK (PS1145), and a novel synthetic diterpene NIK inhibitor (NPI-1342) reverse TRAIL resistance in pancreatic cancer cell lines. Further analysis revealed that the expression of the anti-apoptosic proteins BclXL and XIAP was significantly decreased following exposure to these inhibitors alone and in combination with TRAIL. Additionally, treatment with NPI0052 and TRAIL significantly reduced tumor burden relative to the control tumors in an L3.6pl orthotopic pancreatic xenograft model. This was associated with a significant decrease in proliferation and an increase in caspase 3 and 8 cleavage. Combination therapy employing PS1145 or NPI-1342 in combination with TRAIL also resulted in a significant reduction in tumor burden compared to either agent alone in a Panc1 orthotopic xenograft model. My studies show that combination therapy with inhibitors of NFκB alone and TRAIL is effective in pre-clinical models of pancreatic cancer and suggests that the approach should be evaluated in patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cancer cause of death in the US. Gemcitabine is the first-line therapy for this disease, but unfortunately it shows only very modest benefit. The focus of the current study was to investigate the role and regulation of EphA2, a receptor tyrosine kinase expressed in PDAC, to further understand this disease and identify new therapeutic targets. The role of EphA2 was determined in PDAC by siRNA mediated silencing. In combination with gemcitabine, silencing of EphA2 caused a dramatic increase in apoptosis even in highly resistant cells in vitro. Furthermore, EphA2 silencing was found to be useful in 2 orthotopic models in vivo: 1) shRNA-pretreated Miapaca-2 cells, and 2) in vivo delivery of siRNA to established MPanc96 tumors. Silencing of EphA2 alone reduced tumor growth in Miapaca-2 cells. In MPanc96, only the combination treatment of gemcitabine plus siEphA2 significantly reduced tumor growth, as well as the number of lung and liver metastases. Taken together, these observations support EphA2 as a target for combination therapies for PDAC. The regulation of EphA2 was further explored with a focus on the role of Ras. K-Ras activating mutations are the most important initiating event in PDAC. We demonstrated that Ras regulates EphA2 expression through activation of MEK2 and phosphorylation of ERK. Downstream of ERK, silencing of the transcription factor AP-1 subunit c-Jun or inhibition of the ERK effector RSK caused a decrease in EphA2 expression, supporting their roles in this process. Further examination of Ras/MEK/ERK pathway modulators revealed that PEA-15, a protein that sequesters ERK to the cytoplasm, inhibited expression of EphA2. A significant inverse correlation between EphA2 and PEA-15 levels was observed in mouse models of PDAC. In cells where an EGFR inhibitor reduced phospho-Erk, expression of EphA2 was also reduced, indicating that changes in EphA2 levels may allow monitoring the effectiveness of anti-Ras/MEK/ERK therapies. In conclusion, EphA2 levels may be a good prognostic factor for anti-EGFR/anti-Ras therapies, and EphA2 itself is a relevant target for the development of new therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer-associated death in the United States. Little progress has been made in understanding how proteotoxic stress affects rapidly proliferating pancreatic tumor cells. Endoplasmic reticulum (ER) stress occurs when protein homeostasis in the ER lumen is perturbed. ER stress activates the unfolded protein response (UPR) to reduce the protein load in the ER. Under conditions of moderate ER stress, the UPR promotes cell cycle arrest which allows time for successful protein load reduction and enables cell survival. However, under conditions of high levels of ER stress the UPR induces cellular apoptosis. In this dissertation, I investigated the role of endoplasmic reticulum (ER) stress and its effects on the cell cycle in pancreatic cancer cells. Activation of the unfolded protein response after ER stress induction was determined by comparing expression of key UPR mediators in non-tumorigenic pancreatic ductal cells to pancreatic cancer cells. Two arms of the UPR were assessed: eIF2α/ATF4/CHOP and IRE1α/XBP1s. Pancreatic cancer cells exhibited altered UPR activation characterized by a delay in both phosphorylation of eIF2α and induction of spliced XBP1. Further evaluation of the UPR-mediated effects on cell cycle progression revealed that pancreatic cancer cells showed a compromised ability to inhibit G1 to S phase progression after ER stress. This reduced ability to arrest proliferation was found to be due to an impaired ability to downregulate cyclin D1, a key gatekeeper of the G1/S checkpoint. Abrogation of cyclin D1 repression was mediated through a slow induction of phosphorylation of eIF2α, a critical mediator of translational attenuation in response to ER stress. In conclusion, pancreatic cancer cells demonstrate a globally compromised ability to regulate the unfolded protein response. This deficiency results in reduced cyclin D1 repression through an eIF2α-mediated mechanism. These findings indicate that pancreatic cancer cells have increased tolerance for elevated ER stress compared to normal cells, and this tolerance results in continued tumor cell proliferation under proteotoxic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Actual 5-year survival rates of 10-18% have been reported for patients with resected pancreatic adenocarcinoma (PC), but the use of multimodality therapy was uncommon in these series. We evaluated long-term survival and patterns of recurrence in patients treated for PC with contemporary staging and multimodality therapy. METHODS: We analyzed 329 consecutive patients with PC evaluated between 1990 and 2002 who underwent resection. Each received a multidisciplinary evaluation and a standard operative approach. Pre- or postoperative chemotherapy and/or chemoradiation were routine. Surgical specimens of 5-year survivors were re-reviewed. A multivariate model of factors associated with long-term survival was constructed. RESULTS: Patients underwent pancreaticoduodenectomy (n = 302; 92%), distal (n = 20; 6%), or total pancreatectomy (n = 7; 2%). A total of 108 patients (33%) underwent vascular reconstruction, 301 patients (91%) received neoadjuvant or adjuvant therapy, 157 specimens (48%) were node positive, and margins were microscopically positive in 52 patients (16%). Median overall survival and disease-specific survival was 23.9 and 26.5 months. Eighty-eight patients (27%) survived a minimum of 5 years and had a median overall survival of 11 years. Of these, 21 (24%) experienced recurrence, 7 (8%) after 5 years. Late recurrences occurred most frequently in the lungs, the latest at 6.7 years. Multivariate analysis identified disease-negative lymph nodes (P = .02) and no prior attempt at resection (P = 0.01) as associated with 5-year survival. CONCLUSIONS: Our 27% actual 5-year survival rate for patients with resected PC is superior to that previously reported, and it is influenced by our emphasis on detailed staging and patient selection, a standardized operative approach, and routine use of multimodality therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Situs inversus (SI) is a relatively rare occurrence in patients with pancreatic adenocarcinoma. Pancreatic resection in these patients has rarely been described. CT scan imaging is a principle modality for detecting pancreatic cancer and its use in SI patients is seldom reported. CASE PRESENTATION: We report a 48 year old woman with SI who, despite normal CT scan 8 months earlier, presented with obstructive jaundice and a pancreatic head mass requiring a pancreaticoduodenectomy. The surgical pathology report demonstrated pancreatic adenocarcinoma. CONCLUSION: SI is a rare condition with concurrent pancreatic cancer being even rarer. Despite the rarity, pancreaticoduodenectomy in these patients for resectable lesions is safe as long as special consideration to the anatomy is taken. Additionally, radiographic imaging has significantly improved detection of early pancreatic cancer; however, there continues to be a need for improved detection of small neoplasms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated with pancreatic cancer. This study showed that human PSC cells express COX-2 and synthesize high levels of PGE2. PGE2 stimulated PSC migration and invasion; expression of extra cellular matrix (ECM) genes and tissue degrading matrix metallo proteinases (MMP) genes. I further identified the PGE2 EP receptor responsible for mediating these effects on PSC. Using genetic and pharmacological approaches I identified the receptor required for PGE2 mediates PSC hyper activation. Treating PSC with Specific antagonists against EP1, EP2 and EP4, demonstrated that blocking EP4 receptor only, resulted in a complete reduction of PGE2 mediated PSC activation. Furthermore, siRNA mediated silencing of EP4, but not other EP receptors, blocked the effects of PGE2 on PSC fibrogenic activity. Further examination of the downstream pathway modulators revealed that PGE2 stimulation of PSC involved CREB and not AKT pathway. The regulation of PSC by PGE2 was further investigated at the molecular level, with a focus on COL1A1. Collagen I deposition by PSC is one of the most important events in pancreatic cancer. I found that PGE2 regulates PSC through activation of COL1A1 expression and transcriptional activity. Downstream of PGE2, silencing of EP4 receptor caused a complete reduction of COL1A1 expression and activity supporting the role of EP4 mediated stimulation of PSC. Taken together, this data indicate that PGE2 regulates PSC via EP4 and suggest that EP4 can be a better therapeutic target for pancreatic cancer to reduce the extensive stromal reaction, possibly in combination with chemotherapeutic drugs can further kill pancreatic cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Pancreatic cancer is the fourth leading cause of cancer-related death among males and females in the United States. Sel-1-like (SEL1L) is a putative tumor suppressor gene that is downregulated in a significant proportion of human pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that SEL1L expression could be down-modulated by somatic mutation, loss of heterozygosity (LOH), CpG island hypermethylation and/or aberrantly expressed microRNAs (miRNAs). Material and methods: In 42 PDAC tumors, the SEL1L coding region was amplified using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by agarose gel electrophoresis and sequenced to search for mutations. Using fluorescent fragment analysis, two intragenic microsatellites in the SEL1L gene region were examined to detect LOH in a total of 73 pairs of PDAC tumors and normal-appearing adjacent tissues. Bisulfite DNA sequencing was performed to determine the methylation status of the SEL1L promoter in 41 PDAC tumors and 6 PDAC cell lines. Using real-time quantitative PCR, the expression levels of SEL1L mRNA and 7 aberrantly upregulated miRNAs that potentially target SEL1L were assessed in 42 PDAC tumor and normal pairs. Statistical methods were applied to evaluate the correlation between SEL1L mRNA and the miRNAs. Further the interaction was determined by functional analysis using a molecular biological approach. Results: No mutations were detected in the SEL1L coding region. More than 50% of the samples displayed abnormally alternate or aberrant spliced transcripts of SEL1L. About 14.5% of the tumors displayed LOH at the CAR/CAL microsatellite locus and 10.7% at the RepIN20 microsatellite locus. However, the presence of LOH did not show significant association with SEL1L downregulation. No methylation was observed in the SEL1L promoter. Statistical analysis showed that SEL1L mRNA expression levels significantly and inversely correlated with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223. Functional analysis indicated that hsa-mir-155 acted as a suppressor of SEL1L in PL18 and MDAPanc3 PDAC cell lines. Discussion: Evidence from these studies suggested that SEL1L was possibly downregulated by aberrantly upregulated miRNAs in PDAC. Future studies should be directed towards developing a better understanding of the mechanisms for generation of aberrant SEL1L transcripts, and further analysis of miRNAs that may downregulate SEL1L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer. We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors. In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cachexia is very common among patients with advanced pancreatic cancer and is a marker of poor prognosis. Weight loss in cachexia is due to both adipose and muscle compartments, and sarcopenia (severe muscle depletion) is associated with worse outcomes. Curcumin has shown a myriad of biological effects, including anti-cancer and anti-inflammatory. The ability of curcumin to attenuate cachexia and muscle loss has been tested in animal models, with conflicting results so far. The hypothesis of this study was that patients with advanced pancreatic cancer treated with curcumin for two months have less fat and muscle loss as compared to matched controls not treated with this compound. A matched 1:2 case-control retrospective study was conducted with 22 patients with pancreatic cancer who were treated with curcumin on a previous protocol and 44 untreated controls with the same diagnosis matched by age, gender, time from advanced cancer, body mass index, and number of prior therapies. Data was collected regarding oncologic treatment, medication use, weights, heights, and survival. Body composition was determined by computerized tomography analyses at two timepoints separated by 60±20 days. For treated patients, the first image was at the beginning of treatment and for controls it was determined by the matching time from advanced cancer. The evolution of body composition over time was quantitatively analyzed comparing both groups. All patients lost weight both due to fat and muscle losses, and patients treated with curcumin presented greater losses both in lean adipose body mass. Use of medications, chemotherapy, age, time from advanced cancer, baseline albumin, performance status, and number of prior therapies were not independently correlated with changes in body composition variables. Patients treated with curcumin had borderline shorter survival when compared with untreated patients. Sarcopenic treated patients had significantly shorter survival than non-sarcopenic counterparts, and sarcopenia status was not associated with survival among the controls. Treated patients with shorter survival showed a tendency to lose more lean and especially fat body mass as compared to untreated patients, maybe suggesting an effect of curcumin on shifting weight loss towards the end of life by impacting its mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^