2 resultados para PAG
em DigitalCommons@The Texas Medical Center
Resumo:
Bacillus anthracis plasmid pXO1 carries genes for three anthrax toxin proteins, pag (protective antigen), cya (edema factor), and lef (lethal factor). Expression of the toxin genes is enhanced by two signals: CO$\sb2$/bicarbonate and temperature. The CO$\sb2$/bicarbonate effect requires the presence of pXO1. I hypothesized that pXO1 harbors a trans-acting regulatory gene(s) required for CO$\sb2$/bicarbonate-enhanced expression of the toxin genes. Characterization of such a gene(s) will lead to increased understanding of the mechanisms by which B. anthracis senses and responds to host environments.^ A regulatory gene (atxA) on pXO1 was identified. Transcription of all three toxin genes is decreased in an atxA-null mutant. There are two transcriptional start sites for pag. Transcription from the major site, P1, is enhanced in elevated CO$\sb2$. Only P1 transcripts are significantly decreased in the atxA mutant. Deletion analysis of the pag upstream region indicates that the 111-bp region upstream of the P1 site is sufficient for atxA-mediated increase of this transcript. The cya and lef genes each have one apparent transcriptional start site. The cya and lef transcripts are significantly decreased in the atxA mutant. The atxA mutant is avirulent in mice. The antibody response to all three toxin proteins is significantly decreased in atxA mutant-infected mice. These data suggest that the atxA gene product activates expression of the toxin genes and is essential for virulence.^ Since expression of the toxin genes is dependent on atxA, whether increased toxin gene expression in response to CO$\sb2$/bicarbonate and temperature is associated with increased atxA expression was investigated. I monitored steady state levels of atxA mRNA and AtxA protein in different growth conditions. The results indicate that expression of atxA is not influenced by CO$\sb2$/bicarbonate. Steady state levels of atxA mRNA and AtxA protein are higher at 37$\sp\circ$C than 28$\sp\circ$C. However, increased pag expression at high temperature can not be attributed directly to increased atxA expression.^ There is evidence that an additional factor(s) may be involved in regulation of pag. Expression of pag in strains overproducing AtxA is significantly decreased compared to the wildtype strain. A specific interaction of tagged-AtxA with the pag upstream DNA has not been demonstrated. Furthermore, four proteins in B. anthracis extract can be co-immunoprecipitated with tagged-AtxA. Amino-terminal sequence of one protein has been determined and found highly homologous to chaperonins of GroEL family. Studies are under way to determine if this GroEL-like protein interactions with AtxA and plays any role in atxA-mediated activation of toxin genes. ^
Resumo:
The Bacillus anthracis toxin genes, cya, lef , and pag, can be viewed as a regulon, in which transcription of all three genes is activated in trans by the same regulatory gene, atxA, in response to the same signal, CO2. I determined that several phenotypes are associated with the atxA gene. In addition to being toxin-deficient, an atxA -null mutant grows poorly on minimal media and sporulates early compared to the parent strain. Furthermore, an atxA-null mutant has an altered 2-D gel protein profile. I used a genetic approach to find additional atxA-regulated genes. Random transcriptional lacZ fusions were generated in B. anthracis using transposon Tn 917-LTV3. Transposon-insertion libraries were screened for mutants expressing increased β-galactosidase activity in 5% CO2. Introduction of an atxA-null mutation in these mutants revealed that 79% of the CO2-regulated fusions were also atxA-dependent. DNA sequence analysis of transposon insertion sites in mutants carrying CO 2/atxA-regulated fusions revealed ten mutants harboring transposon insertions in loci distinct from the toxin genes. The majority of the tcr (toxin co-regulated) loci mapped within the pXO1 pathogenicity island. These results indicate a clear association of atxA with CO2-enhanced gene expression in B. anthracis and provide evidence that atxA regulates genes other than the structural genes for the anthrax toxin proteins. ^ Characterization of one tcr locus revealed a new regulatory gene, pagR. The pagR gene (300 nt) is located downstream of pag. pagR is cotranscribed with pag and is responsible for autogenous control of the operon. pagR also represses expression of cya and lef. Repression of toxin gene expression by pagR may be mediated by atxA. The steady state level of atxA mRNA is increased in a pagR mutant. Recombinant PagR protein purified from Escherichia coli did not specifically bind the promoter regions of pagA or atxA. An unidentified factor in B. anthracis crude extracts, however, was able to bind the atxA promoter in the absence of PagR or AtxA. These investigations increase our knowledge of virulence regulation in B. anthracis and ultimately will lead to a better understanding of anthrax disease. ^