7 resultados para Osteoporosis
em DigitalCommons@The Texas Medical Center
Resumo:
Staphylcoccus aureus is a prokaryotic organism capable of causing numerous superficial and severe human infections. Adhesion of S. aureus to host tissues or cells is believed to be a crucial event in S. aureus infections. Subsequently, S. aureus can seed into the bloodstream resulting in metastasis of the infection. Several reports show that S. aureus can be internalized by non-professional phagocytes, a process which has been proposed to be important in S. aureus dissemination. An intracellular residence has also been proposed to provide safe harbor to reservoirs of dormant bacteria contributing to the persistence of infection. This dissertation describes an investigation into the molecular mechanisms of S. aureus internalization into both fibroblast and epithelial cells. Bacterial requirements for internalization were found to be limited to expression of proteins that bind the extracellular matrix protein fibronectin. A previously unknown fibronectin-binding region in the S. aureus fibronectin-binding protein A was discovered after showing competitive inhibition of S. aureus internalization. This novel fibronectin-binding activity is characterized. Internalization also required cell-based factors. The presence of fibronectin and cell surface receptors of the β1 integrin class, which are known to bind and internalize fibronectin, were found to be necessary for optimal internalization of S. aureus. These results led to the conclusion that fibronectin acts as a bridge between the bacterium and integrins on the host cells. The internalization process exhibits features characteristic of integrin-mediated cell migration on fibronectin-coated surfaces. Both processes involved an active form of the β1 integrin subunit and the protein tyrosine kinase Src. Finally, a Src inhibitor previously shown to be effective in reducing osteoporosis in an in vivo rat model is capable of greatly reducing S. aureus internalization. ^
Resumo:
Epidemiological evidence suggests that fruit and vegetable intake is negatively associated with the development of several chronic diseases, including heart disease, some cancers and diabetes mellitus. Inadequate consumption of milk during developmental years is associated with osteoporosis. Consumption of fruit, vegetable and milk (FVM) declines from childhood to adolescence. Adolescent eating habits persist into adulthood; thus, understanding psychosocial factors such as self-efficacy, norms and preferences, is important for developing effective interventions. Preferences, one of the most consistent correlates of fruit and vegetable consumption in children and adolescents, may mediate the relationships between self-efficacy and norms and fruit and vegetable consumption. ^ Fifth grade students from one middle school in South Texas were followed for two years. Students completed lunch food records and questionnaires assessing fruit, vegetable and milk self-efficacy and norms and fruit and vegetable preferences. Principal component analyses identified four scales: Fruit Self-Efficacy, Vegetable Self-Efficacy, Fruit and Vegetable Norms, and Milk Influences. Reliability and validity of the four scales and emerging subscales were assessed using Cronbach's alpha and consumption data, respectively. Associations between longitudinal FVM consumption and self-efficacy and norms were tested. Additionally, the influence of preferences on the relationship of self-efficacy, norms and fruit and vegetable consumption was examined. ^ Confirmatory factor analyses confirmed four scales and subscales. Internal consistency and test-retest reliabilities were acceptable. Self-efficacy and norms were related to FVM consumption and changes in fruit and high fat vegetable consumption over the two-year period. While intake over the two-year period differed statistically, eating patterns were stable. Preferences mediated the relation between fruit self-efficacy and FV norms and fruit consumption. ^ In conclusion, self-efficacy and norms about consuming FVM at school appear to influence FVM consumption. Because eating patterns were similar over the two-year period, establishing healthy eating habits in elementary school is important. While FVM self-efficacy and norms influenced FVM consumption in children, only fruit preferences mediated the relationship of fruit consumption, self-efficacy and norms. Since the influences of FVM consumption appear to differ, interventions designed to increase consumption should target these differences and consider the specificity of self-efficacy and norms. ^
Resumo:
This study was designed to investigate the effect of calcium and fluoride intake, and parity and lactation on the risk of spinal osteoporosis. Height loss was used as a surrogate measure for spinal fractures by taking advantage of documented changes in height found during the 25-year follow-up of the Charleston Heart Study cohort. Women who had lost 2-4" in height or who had no change in height during the follow-up period were defined as case and comparison subjects respectively. Calcium intake when the subjects were "about 25" and in the recent past, average intake of fluoride over 25 years, and parity and history of breastfeeding were ascertained by questionnaire from 54 case and 77 comparison subjects. Low calcium intake in the past decreased the risk of height loss (age-adjusted OR = 0.3, 95%CI: 0.1-0.96) although several potentially important confounding variables could not be adjusted for. There was no association between risk of height loss and present calcium intake (OR = 0.8, 95%CI: 0.3-2.6 for low versus high intake) after adjustment for past calcium intake. High fluoride intake decreased the risk of height loss (adjusted OR = 0.4, 95%CI: 0.1-1.2). The effect of fluoride or calcium intake in the present was modified by the level of the other nutrient. Compared to a low intake of both calcium and fluoride, a high intake of one increased the risk of height loss (crude OR = 3.3 for high fluoride/low calcium, crude OR = 6.0 for high calcium/low fluoride) although a high intake of both was slightly protective (crude OR = 0.7). It is estimated that a "high" nutrient intake in this population was greater than 850mg/day for calcium and 2mg/day for fluoride. After adjustment for age, increasing parity decreased the risk of height loss in women who had never breastfed (OR = 0.2, 95%CI: 0.01-1.7 for 4 or more children). Women who had breastfed were also at lower risk of height loss than nulliparous women (OR = 0.3, 95%CI: 0.1-1.2 for 4 or more children) although at any level of parity, breastfeeding women had a greater risk of height loss than did non-breastfeeding women. ^
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^
Resumo:
Bisphosphonates represent a unique class of drugs that effectively treat and prevent a variety of bone-related disorders including metastatic bone disease and osteoporosis. High tolerance and high efficacy rates quickly ranked bisphosphonates as the standard of care for bone-related diseases. However, in the early 2000s, case reports began to surface that linked bisphosphonates with osteonecrosis of the jaw (ONJ). Since that time, studies conducted have corroborated the linkage. However, as with most disease states, many factors can contribute to the onset of disease. The aim of this study was to determine which comorbid factors presented an increased risk for developing ONJ in cancer patients.^ Using a case-control study design, investigators used a combination of ICD-9 codes and chart review to identify confirmed cases of ONJ at The University of Texas M. D. Anderson Cancer Center (MDACC). Each case was then matched to five controls based on age, gender, race/ethnicity, and primary cancer diagnosis. Data querying and chart review provided information on variables of interest. These variables included bisphosphonate exposure, glucocorticoids exposure, smoking history, obesity, and diabetes. Statistical analysis was conducted using PASW (Predictive Analytics Software) Statistics, Version 18 (SPSS Inc., Chicago, Illinois).^ One hundred twelve (112) cases were identified as confirmed cases of ONJ. Variables were run using univariate logistic regression to determine significance (p < .05); significant variables were included in the final conditional logistic regression model. Concurrent use of bisphosphonates and glucocorticoids (OR, 18.60; CI, 8.85 to 39.12; p < .001), current smokers (OR, 2.52; CI, 1.21 to 5.25; p = .014), and presence of diabetes (OR, 1.84; CI, 1.06 to 3.20; p = .030) were found to increase the risk for developing ONJ. Obesity was not associated significantly with ONJ development.^ In this study, cancer patients that received bisphosphonates as part of their therapeutic regimen were found to have an 18-fold increase in their risk of developing ONJ. Other factors included smoking and diabetes. More studies examining the concurrent use of glucocorticoids and bisphosphonates may be able to strengthen any correlations.^
Resumo:
Hyper IgE syndrome (HIES) is a multisystem disorder resulting in bone and immune system abnormalities. It is associated with mutations in STAT3, which disrupt protein domains responsible for transcriptional function. Patients with HIES display osteoporosis and enhanced inflammatory cytokine production similar to hematopoietic Stat3-deficient mice. Since osteoclast and inflammatory cytokine genes are NFκB targets, these observations indicate a possible deregulation of NFκB signaling in both mice and humans with STAT3-deficiency. Here, we sought to examine the role of STAT3 in the regulation of NFκB-mediated gene expression through analysis of three HIES STAT3 point mutations in both hematopoietic and non- hematopoietic cells. We found that IL-6-induced tyrosine phosphorylation of STAT3 was partially or completely abrogated by HIES mutations in the transactivation domain (V713L) or SH2 domain (V637M), respectively, in both hematopoietic and non- hematopoietic cells. By contrast, IL-6-induced tyrosine phosphorylation of an HIES mutant in the STAT3 DNA-binding domain (R382W) was intact. The R382W and V713L mutants significantly reduced IL-6-dependent STAT3 transcriptional activity in reporter gene assays. Moreover, the R382W and V637M mutants significantly diminished IL-6-responsive expression of the endogenous STAT3 target gene, Socs3, as assessed by quantitative real-time PCR (qPCR) in the RAW macrophage cell line. These observations indicate the HIES mutants dominantly suppress the transcriptional activity of wild type STAT3, albeit to varying degrees. All three HIES mutants enhanced LPS-induced expression of the NFκB target genes IL6 (IL-6), Cxcl10 (IP- 10), and Tnf (TNFα) in RAW cells, as indicated by qPCR. Furthermore, overexpression of wild type STAT3 in Stat3-deficient murine embryonic fibroblasts significantlyreduced LPS-stimulated expression of IL6, Cxcl10, and IL12p35. In addition, in aprimary murine osteoclast differentiation assay, a STAT3-specific SH2 domain inhibitor led to significantly increased levels of osteoclast-specific gene expression. These results suggest that STAT3 serves as a negative regulator of NFκB-mediated gene expression, and furthermore imply that STAT3 mutations associated with HIES contribute to the osteopenia and inflammation observed in HIES patients.
Resumo:
The small leucine-rich repeat proteoglycans (or SLRPs) are a group of extracellular proteins (ECM) that belong to the leucine-rich repeat (LRR) superfamily of proteins. The LRR is a protein folding motif composed of 20–30 amino acids with leucines in conserved positions. LRR-containing proteins are present in a broad spectrum of organisms and possess diverse cellular functions and localization. In mammals, the SLRPs are abundant in connective tissues, such as bones, cartilage, tendons, skin, and blood vessels. We have discovered a new member of the class I small leucine rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N-terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9g21.3 where asporin is part of a SLRP gene cluster that includes ECM2, osteoadherin, and osteoglycin. This gene cluster of four LRR-encoding genes is embedded in a 238 kilobase intron of another novel gene named Tes9orf that is expressed primarily in the testes of the adult mouse. The SLRP genes are not present in Drosophila or C. elegans , but reside in three separate gene clusters in the puffer fish, mice and humans. Targeted disruption of individual mouse SLRP genes display minor connective tissue defects such as skin fragility, tendon laxity, minor growth plate defects, and mild osteoporosis. However, double and triple knockouts of SLRP genes exacerbate these phenotypes. Both the double epiphycan/biglycan and the triple PRELP/fibromodulin/biglycan knockout mice exhibit premature osteoarthritis. ^