4 resultados para Osseous metaplasia

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. METHODS: We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. RESULTS: No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osseous metastases account for most of the morbidity and mortality associated with prostate cancer, for which there are currently no effective therapies. In the skeletal metastatic environment, neoplastic prostatic epithelial cells interact in a bidirectional stimulatory manner with osteoblastic stromal cells. Similarly, the presence of osteoblastic cells is essential for the survival and maintenance of intraosseous prostate cancer cells. In this thesis, I have developed novel gene therapy strategies for the treatment of androgen-independent human prostate cancers in experimental animal models. First, Ad-CMV-p53, a recombinant adenovirus (Ad) containing p53 tumor suppressor gene driven by the universal cytomegalovirus promoter, was effective in inhibiting prostate cancer cell growth, and direct intratumoral injections of Ad-CMV-p53 resulted in tumor regression. Second, because prostate cancer cells as well as osteoblastic cells produce osteocalcin (OC), OC promoter mediated tissue/tumor specific toxic gene therapy is developed to interrupt stromal-epithelial communications by targeting both cell types. Ad-OC-TK, a recombinant Ad containing the herpes simplex virus thymidine kinase (TK) gene driven by the OC promoter, was generated to inhibit the growth of osteoblastic osteosarcoma with prodrug acyclovir (ACV). Ad-OC-TK/ACV also inhibited the growth of prostate cancer cells and suppressed the growth of subcutaneous and intraosseous prostate tumor. In order to combine treatment modalities to maximize tumor cell-kill with minimized host toxicities, Ad-OC-TK/ACV was applied in combination with low dose methotrexate to eradicate osteoblastic osteosarcoma. In targeting of micrometastatic disease, intravenous Ad-OC-TK/ACV treatment resulted in significant tumor nodule reduction and prolonged the survival of animals harboring osteosarcoma lung metastases without significant host toxicity. Ad-OC-TK is a rational choice for the treatment of prostate cancer skeletal metastasis because OC is uniformly detected in both primary and metastatic human prostate cancer specimens by immunohistochemistry. Ad-OC-TK/ACV inhibits the growth not only of prostate cancer cells but also of their supporting bone stromal cells. Targeting both prostate cancer epithelium and its supporting stroma may be most efficacious for the treatment of prostate cancer osseous metastases. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The female reproductive tract (FRT) develops midway through embryogenesis, and consists of oviducts, uterine horns, cervix and upper part of the vagina. The uterine horns are composed of an epithelial layer, luminal (LE) and glandular epithelium (GE), surrounded by a mesenchymal layer, the stroma and myometrium. Interestingly, in most mammals the GE forms after birth and it only becomes fully differentiated as the female reaches sexual maturity. Uterine glands (UG) are made up of GE and are present in all mammals. They secrete nutrients, cytokines and several other proteins, termed histotroph, that are necessary for embryo implantation and development. Experiments in ewes and mice have revealed that females who lack UGs are infertile mainly due to impaired implantation and early pregnancy loss, suggesting that UGs are essential for fertility. Fortunately for us, UGs develop after birth allowing us to peer into the genetic mechanism of tubulogenesis and branching morphogenesis; two processes that are disrupted in various adenocarcinomas (cancer derived from glands). We created 3D replicas of the epithelium lining the FRT using optical projection tomography and characterized UG development in mice using lineagetracing experiments. Our findings indicate that mouse UGs develop as simple tubular structures and later grow multiple secretory units that stem from the main duct. The main aim of this project was to study the role of SOX9 in the UGs. Preliminary studies revealed that Sox9 is mostly found in the nucleus of the GE. vii This observation led to the hypothesis that Sox9 plays a role in the formation and/or differentiation of the GE. To study the role of Sox9 in UGs differentiation, we conditionally knocked out and overexpressed Sox9 in both the LE and GE using the progesterone receptor (Pgr) promoter. Overexpressing Sox9 in the uterine epithelium, parts of the stroma, and myometrium led to formation of multiple cystic structures inside the endometrium. Histological analysis revealed that these structures appeared morphologically similar to structures present in histological tissue sections obtained from patients with endometrial polyps. We have accounted for the presence of simple and complex hyperplasia with atypia, metaplasia, thick-walled blood vessels, and stromal fibrosis; all “hallmarks” that indicate overexpressing Sox9 leads to development of a polyp-like morphology. Therefore, we can propose the use of Sox9-cOE mice to study development of endometrial cystic lesions and disease progression into hyperplastic lesions.