2 resultados para Ordered Probit Model
em DigitalCommons@The Texas Medical Center
Resumo:
Public preferences for policy are formed in a little-understood process that is not adequately described by traditional economic theory of choice. In this paper I suggest that U.S. aggregate support for health reform can be modeled as tradeoffs among a small number of behavioral values and the stage of policy development. The theory underlying the model is based on Samuelson, et al.'s (1986) work and Wilke's (1991) elaboration of it as the Greed/Efficiency/Fairness (GEF) hypothesis of motivation in the management of resource dilemmas, and behavioral economics informed by Kahneman and Thaler's prospect theory. ^ The model developed in this paper employs ordered probit econometric techniques applied to data derived from U.S. polls taken from 1990 to mid-2003 that measured support for health reform proposals. Outcome data are four-tiered Likert counts; independent variables are dummies representing the presence or absence of operationalizations of each behavioral variable, along with an integer representing policy process stage. Marginal effects of each independent variable predict how support levels change on triggering that variable. Model estimation results indicate a vanishingly small likelihood that all coefficients are zero and all variables have signs expected from model theory. ^ Three hypotheses were tested: support will drain from health reform policy as it becomes increasingly well-articulated and approaches enactment; reforms appealing to fairness through universal health coverage will enjoy a higher degree of support than those targeted more narrowly; health reforms calling for government operation of the health finance system will achieve lower support than those that do not. Model results support the first and last hypotheses. Contrary to expectations, universal health care proposals did not provide incremental support beyond those targeted to “deserving” populations—children, elderly, working families. In addition, loss of autonomy (e.g. restrictions on choice of care giver) is found to be the “third rail” of health reform with significantly-reduced support. When applied to a hypothetical health reform in which an employer-mandated Medical Savings Account policy is the centerpiece, the model predicts support that may be insufficient to enactment. These results indicate that the method developed in the paper may prove valuable to health policy designers. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^