23 resultados para Opioid receptors
em DigitalCommons@The Texas Medical Center
Resumo:
Naltrexone, an opioid antagonist, was the second drug approved for treatment of alcohol dependence in the U.S. Its approval followed two landmark studies published in the U.S. in 1992. [1, 2] These studies showed that a combined treatment of naltrexone and behavioral therapy reduced alcohol consumption in alcoholics. Opioid antagonists decrease craving for alcohol and help to reduce drinking by blocking opioid peptide receptors in the body that are active in a dopamine chemical reward system. ^ Despite their usefulness, opioid antagonists have been underutilized. Health providers not educated in the use of opioid antagonists hold the view that opioid antagonist therapy is ineffective. However, it is apparent from the relevant literature that this therapy, when properly understood and targeted, has the potential to make a positive contribution in treating alcohol dependent patients. ^ This thesis will review the scientific literature and the present body of knowledge regarding opioid antagonists (naltrexone) and their pharmacological role in treating alcohol dependence.^
Resumo:
BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.
Resumo:
The development of effective treatments for opioid dependence is of great importance given the devastating consequences of the disease. Pharmacotherapies for opioid addiction include opioid agonists, partial agonists, opioid antagonists, and alpha-2-adrenergic agonists, which are targeted toward either detoxification or long-term agonist maintenance. Agonist maintenance therapy is currently the recommended treatment for opioid dependence due to its superior outcomes relative to detoxification. Detoxification protocols have limited long-term efficacy, and patient discomfort remains a significant therapy challenge. Buprenorphine's effectiveness relative to methadone remains a controversy and may be most appropriate for patients in need of low doses of agonist treatment. Buprenorphine appears superior to alpha-2 agonists, however, and office-based treatment with buprenorphine in the USA is gaining support. Studies of sustained-release formulations of naltrexone suggest improved effectiveness for retention and sustained abstinence; however, randomized clinical trials are needed.
Resumo:
Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.
Resumo:
In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPAR gamma ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.
Resumo:
Background: Inflammation is implicated in the development of cancer related fatigue (CRF). However there is limited literature on the mediators of inflammation (namely), cytokines and their receptors, associated with clinically significant fatigue and response to treatment. Methods: We reviewed 37 advanced cancer patients with fatigue (≥4/10), who participated in two Randomized Controlled Trials, of anti-inflammatory agents (Thalidomide and Dexamethasone) for CRF. Responders showed improvement in FACIT-F subscale at the end of study (Day 15). Baseline patient characteristics and symptoms were assessed by FACIT-F, ESAS; serum cytokines [IL-1β and receptor antagonist (IL-1RA), IL-6, IL-6R, TNF-α and sTNF-R1 and R2, IL-8, IL-10, IL-17] levels measured by Luminex. Data were analyzed using principal component analysis (PCA) [reporting cumulative variance (variance) for the first four components] to determine their association with fatigue and response to treatment. Results: Females were 54%. Mean (SD) was as follows for age, 61(14); baseline FACIT (F) scores, 21.4(8.6); ESAS Fatigue item, 6.5(1.9); and FACIT-F change, 6.4(9.7); ESAS (fatigue) change, -2 (2.41). Baseline median in pg/mL for IL-6, TNF-α, IL-1β were 31.9; 18.9; 0.55, respectively. Change in IL-6 negatively correlated with change in FACIT-F scores (p=0.02). Baseline CRF (FACIT-F score) was associated with IL-6, IL-6R and IL-17, Variance = 78% whereas IL-10, IL-1RA, TNF-α and IL-1β were associated with improvement of CRF, Variance=74%. Conversely, IL-6 and IL-8 were associated with no improvement or worsening of CRF, Variance= 93%. Conclusions: Change in IL-6 negatively correlated with change in FACIT-F scores. IL-6, IL-6R and IL-17 are associated with CRF while IL-6 and IL-8 were associated with no improvement of CRF. Further studies are warranted confirm our findings.
Resumo:
The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.
Resumo:
During the last twenty years a scientific basis for the anecdotal reports of an interaction between the brain and the immune system has established neuroimmunemodulation as a new field of study in the biomedical sciences. A means for the brain to exert a regulatory influence upon various lymphoid reactions has been well established by many investigators world wide. This dissertation was geared to test the central hypothesis that the immune system, in turn, produces signals which affect CNS functions. Specifically, it is shown through several different experiments, behavioral and electrophysiologic, that the immune modifiers interferon-alpha, gamma irradiation, cyclosporine-A and muramyl-dipeptide modify brain opioid related activities. Each agent attenuates naloxone-precipitated morphine withdrawal following either systemic or intracranial injection. Each agent also has effects upon either the acute antinociceptive or hypothermic activities of morphine. Finally, each agent modifies baseline evoked electrical activity of several brain areas of awake freely-behaving rats. Later studies demonstrate that muramyl-dipeptide modifies the unit firing rate of single neurons in the brain following either systemic or localized administration within the brain. These results suggest that the immune system produces signals which affect brain activity; and thus, support the contention of a bi-directional interaction between the brain and the immune system. ^
Resumo:
A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^
Resumo:
Retinoic acid has profound effects on the cellular growth and differentiation of a variety of cells. However, the molecular basis of retinoic acid action has, until recently, not been well understood. The identification of retinoic acid receptors which bear a high degree of homology to members of the steroid receptor super-family has dramatically altered our understanding of the biology of retinoids. The focus of this dissertation has been toward identification of retinoic acid binding proteins responsible for the effects of this molecule on gene expression.^ We have characterized in detail the retinoic acid-dependent induction of tissue transglutaminase gene expression in a myeloid cell line, human promyelocytic leukemia cells (HL-60 cells). Using cDNA probes specific for tissue transglutaminase, we have determined that the retinoic acid induced increase in enzyme level is due to an increase in the level of tissue transglutaminase mRNA. We have used this model as a probe to investigate the molecular basis of retinoid regulated gene expression.^ This thesis demonstrates that retinoic acid receptors are expressed in cells which induce tissue transglutaminase expression in response to retinoic acid. In Hl-60 cells retinoic acid-induced transglutaminase expression is associated with saturable nuclear retonic acid binding. Transcripts for both the alpha and beta forms of the retinoic acid receptors can be detected in these cells. Pretreatment of HL-60 cells with agents that potentiate retinoic acid-induced transglutaminase expression also modestly induced the alpha form of the retinoic acid receptor. Studies in macrophages and umbilical vein endothelial cells have also associated expression of the beta form of the retinoic acid with retinoic acid induced tissue transglutaminase expression.^ To investigate directly if retinoic acid receptors regulate retinoic acid-induced tissue transglutaminase expression we developed a series of stably transfected Balb-c 3T3 cells expressing different levels of the beta or gamma form of the retinoic acid receptor. These studies indicated that either the beta or gamma receptor can stimulate endogenous tissue transglutaminase expression in response to retinoic acid. These are among the first studies in the steroid field to describe regulation of an endogenous gene by a transfected receptor. ^
Resumo:
The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^
Resumo:
During the fifty-five years since the origin of the modern concept of stress, a variety of neurochemical, physiological, behavioral and pathological data have been collected in order to define stress and catalogue the components of the stress response. Over the last twenty-five years, as interest in the neural mechanisms underlying the stress response grew, most of the studies have focused on the hypothalamus and major limbic structures such as the amygdala or on nuclei involved in neurochemical changes observed during stress. There are other CNS sites, such as the bed nucleus of the stria terminalis (BNST), that neuroanatomical and neurochemical studies suggest may be involved in stress, but these sites have rarely been studied. Four experiments were performed for this dissertation, the goal of which was to examine the BNST to determine its role in the regulation of the stress response. The first experiment demonstrated that electrical stimulation of BNST was sufficient to produce stress-like behaviors. The second experiment demonstrated that single BNST neurons altered their firing rate in response to both a noxious somatosensory stimulus such as tail pinch and electrical stimulation of the amygdala (AmygS). The third experiment showed that the opioid, cholinergic, and noradrenergic systems, three neurotransmitter systems implicated in the control of the stress response, were effective in altering the firing rate of BNST neurons. The fourth experiment demonstrated that the cholinergic effects were mediated via muscarinic receptors and showed that the effects of AmygS were not mediated via cholinergic pathways. Collectively, these findings provide a possible explanation for the nonspecificity in causation of stress and the invariability of the stress response and suggest a neurochemical basis for its pharmacological control. ^
Resumo:
The amino acid glutamate is the primary excitatory neurotransmitter for the CNS and is responsible for the majority of fast synaptic transmission. Glutamate receptors have been shown to be involved in multiple forms of synaptic plasticity such as LTP, LTD, and the formation of specific synaptic connections during development. In addition to contributing to the plasticity of the CNS, glutamate receptors also are involved in, at least in part, various pathological conditions such as epilepsy, ischemic damage due to stroke, and Huntington's chorea. The regulation of glutamate receptors, particularly the ionotropic NMDA and AMPA/KA receptors is therefore of great interest. In this body of work, glutamate receptor function and regulation by kinase activity was examined using the Xenopus oocyte which is a convenient and faithful expression system for exogenous proteins. Glutamate receptor responses were measured using the two-electrode voltage clamp technique in oocytes injected with rat total forebrain RNA. NMDA elicited currents that were glycine-dependent, subject to block by Mg$\sp{2+}$ in a voltage-dependent manner and sensitive to the specific NMDA antagonist APV in a manner consistent with those types of responses found in neural tissue. Similarly, KA-evoked currents were sensitive to the specific AMPA/KA antagonist CNQX and exhibited current voltage relationships consistent with the calcium permeable type II KA receptors found in the hippocampus. There is evidence to indicate that NMDA and AMPA/KA receptors are regulated by protein kinase A (PKA). We explored this by examining the effects of activators of PKA (forskolin, 1-isobutyl-3-methylxanthine (IBMX) and 8-Br-cAMP) on NMDA and KA currents in the oocyte. In buffer where Ca$\sp{2+}$ was replaced by 2 mM Ba$\sp{2+},$ forskolin plus IBMX and 8-Br-cAMP augmented currents due to NMDA application but not KA. This augmentation was abolished by pretreating the oocytes in the kinase inhibitor K252A. The use of chloride channel blockers resulted in attenuation of this effect indicating that Ba$\sp{2+}$ influx through the NMDA channel was activating the endogenous calcium-activated chloride current and that the cAMP mediated augmentation was at the level of the chloride channel and not the NMDA channel. This was confirmed by (1) the finding that 8-Br-cAMP increased chloride currents elicited via calcium channel activation while having no effect on the calcium channels themselves and (2) the fact that lowering the Ba$\sp{2+}$ concentration to 200 $\mu$M abolished the augmentation NMDA currents by 8-Br-cAMP. Thus PKA does not appear to modulate ionotropic glutamate receptors in our preparation. Another kinase also implicated in the regulation of NMDA receptors, calcium/phospholipid-dependent protein kinase (PKC), was examined for its effects on the NMDA receptor under low Ba$\sp{2+}$ (200 $\mu$M) conditions. Phorbol esters, activators of PKC, induced a robust potentiation of NMDA currents that was blockable by the kinase inhibitor K252A. Furthermore activation of metabotropic receptors by the selective agonist trans-ACPD, also potentiated NMDA albeit more modestly. These results indicate that neither NMDA nor KA-activated glutamate receptors are modulated by PKA in Xenopus oocytes whereas NMDA receptors appear to be augmented by PKC. Furthermore, the endogenous chloride current of the oocyte was found to be responsive to Ba$\sp{2+}$ and in addition is enhanced by PKA. Both of these latter findings are novel. In conclusion, the Xenopus oocyte is a useful expression system for the analysis of ligand-gated channel activity and the regulation of those channels by phosphorylation. ^
Resumo:
(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^