15 resultados para Open Research Data
em DigitalCommons@The Texas Medical Center
Resumo:
Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.
Resumo:
Increasing amounts of clinical research data are collected by manual data entry into electronic source systems and directly from research subjects. For this manual entered source data, common methods of data cleaning such as post-entry identification and resolution of discrepancies and double data entry are not feasible. However data accuracy rates achieved without these mechanisms may be higher than desired for a particular research use. We evaluated a heuristic usability method for utility as a tool to independently and prospectively identify data collection form questions associated with data errors. The method evaluated had a promising sensitivity of 64% and a specificity of 67%. The method was used as described in the literature for usability with no further adaptations or specialization for predicting data errors. We conclude that usability evaluation methodology should be further investigated for use in data quality assurance.
Resumo:
Context: Black women are reported to have a higher prevalence of uterine fibroids, and a threefold higher incidence rate and relative risk for clinical uterine fibroid development as compared to women of other races. Uterine fibroid research has reported that black women experience greater uterine fibroid morbidity and disproportionate uterine fibroid disease burden. With increased interest in understanding uterine fibroid development, and race being a critical component of uterine fibroid assessment, it is imperative that the methods used to determine the race of research participants is defined and the operational definition of the use of race as a variable is reported for methodological guidance, and to enable the research community to compare statistical data and replicate studies. ^ Objectives: To systematically review and evaluate the methods used to assess race and racial disparities in uterine fibroid research. ^ Data Sources: Databases searched for this review include: OVID Medline, NML PubMed, Ebscohost Cumulative Index to Nursing and Allied Health Plus with Full Text, and Elsevier Scopus. ^ Review Methods: Articles published in English were retrieved from data sources between January 2011 and March 2011. Broad search terms, uterine fibroids and race, were employed to retrieve a comprehensive list of citations for review screening. The initial database yield included 947 articles, after duplicate extraction 485 articles remained. In addition, 771 bibliographic citations were reviewed to identify additional articles not found through the primary database search, of which 17 new articles were included. In the first screening, 502 titles and abstracts were screened against eligibility questions to determine citations of exclusion and to retrieve full text articles for review. In the second screening, 197 full texted articles were screened against eligibility questions to determine whether or not they met full inclusion/exclusion criteria. ^ Results: 100 articles met inclusion criteria and were used in the results of this systematic review. The evidence suggested that black women have a higher prevalence of uterine fibroids when compared to white women. None of the 14 studies reporting data on prevalence reported an operational definition or conceptual framework for the use of race. There were a limited number of studies reporting on the prevalence of risk factors among racial subgroups. Of the 3 studies, 2 studies reported prevalence of risk factors lower for black women than other races, which was contrary to hypothesis. And, of the three studies reporting on prevalence of risk factors among racial subgroups, none of them reported a conceptual framework for the use of race. ^ Conclusion: In the 100 uterine fibroid studies included in this review over half, 66%, reported a specific objective to assess and recruit study participants based upon their race and/or ethnicity, but most, 51%, failed to report a method of determining the actual race of the participants, and far fewer, 4% (only four South American studies), reported a conceptual framework and/or operational definition of race as a variable. However, most, 95%, of all studies reported race-based health outcomes. The inadequate methodological guidance on the use of race in uterine fibroid studies, purporting to assess race and racial disparities, may be a primary reason that uterine fibroid research continues to report racial disparities, but fails to understand the high prevalence and increased exposures among African-American women. A standardized method of assessing race throughout uterine fibroid research would appear to be helpful in elucidating what race is actually measuring, and the risk of exposures for that measurement. ^
Resumo:
Data collected under federally funded research is subject to compliance rules and regulations. Policies affecting what you can and cannot do with your data, who is responsible, and what role your institution plays can vary with funding agencies and the type of data collected. This talk will address many of the compliance issues associated with research data, as well as funder mandates that you need to be aware of to ensure compliance.
Resumo:
Geneva Henry, Executive Director of the Center for Digital Scholarship, Rice University. Data rights and ownership of digital research data can impact how you use data, how others use data you've collected, and how rights are determined in collaborative research. Copyright rules governing data vary from one country to the next, making data ownership in international collaborations particularly murky. Licensing the use of data sets from the start is one way to address these issues early and provide a means for easily sharing datasets that can be cited and properly attributed. This talk with introduce issues associated with digital research data governance and how to protect your rights with data you work with.
Resumo:
It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.
Resumo:
Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.
Resumo:
The current state of health and biomedicine includes an enormity of heterogeneous data ‘silos’, collected for different purposes and represented differently, that are presently impossible to share or analyze in toto. The greatest challenge for large-scale and meaningful analyses of health-related data is to achieve a uniform data representation for data extracted from heterogeneous source representations. Based upon an analysis and categorization of heterogeneities, a process for achieving comparable data content by using a uniform terminological representation is developed. This process addresses the types of representational heterogeneities that commonly arise in healthcare data integration problems. Specifically, this process uses a reference terminology, and associated "maps" to transform heterogeneous data to a standard representation for comparability and secondary use. The capture of quality and precision of the “maps” between local terms and reference terminology concepts enhances the meaning of the aggregated data, empowering end users with better-informed queries for subsequent analyses. A data integration case study in the domain of pediatric asthma illustrates the development and use of a reference terminology for creating comparable data from heterogeneous source representations. The contribution of this research is a generalized process for the integration of data from heterogeneous source representations, and this process can be applied and extended to other problems where heterogeneous data needs to be merged.
Resumo:
This participatory action-research project addressed the hypothesis that strengthened community and women's capacity for self-development will lead to action to address maternal health problems and the prevention of maternal morbidity and mortality in Mali. Research objectives were: (1) to undertake a comparative cross-sectional study of the association of community capacity with improved maternal health in rural areas of Sanando, Mali, where capacity building interventions have taken place in some villages but not in others. (2) to describe women's maternal health status, access to and use of maternal health services given their residence in program or comparison communities.^ The participatory action research project was an integrated qualitative and quantitative study using participatory rural appraisal exercises, semi-structured group interviews and a cross-sectional survey.^ Factors related to community capacity for self-development were identified: community harmony; an understanding of the benefits of self-development; dynamic leadership; and a structure to implement collective activities.^ A distinct difference between the program and comparison villages was the commitment to train and support traditional birth attendants (TBAs). The TBAs in the program villages work in the context of the wider, integrated self-development program and, 10 years after their initial training, the TBAs continue to practice.^ Many women experience labor and childbirth alone or are attended by an untrained relative in both program and comparison villages. Nevertheless a significant change is apparent, with more women in program villages than in comparison villages being assisted by the TBAs. The delivery practices of the TBAs reveal the positive impact of their training in the "three cleans" (clean hands of the assistant, clean delivery surface and clean cord-cutting). The findings of this study indicate a significant level of unmet need for child spacing methods in all villages.^ The training and support of TBAs in the program villages yielded significant improvements in their delivery practices, and resulting outcomes for women and infants. However, potential exists for further community action. Capacities for self-development have not yet been directed toward an action plan encompassing other Safe Motherhood interventions, including access to family planning services and emergency obstetric care services. ^
Resumo:
Material Safety Data Sheets (MSDSs) are an integral component of occupational hazard communication systems. These documents are used to disseminate hazard information to workers on chemical substances. The primary purpose of this study was to investigate the comprehensibility of MSDSs by workers at an international level. ^ A total of 117 employees of a multi-national petrochemical company participated; thirty-nine (39) each in the United States, Canada and the United Kingdom. Overall participation rate of those approached to participate was 82%. These countries were selected as they each utilize one of the three major existing hazard communication systems for fixed workplaces. The systems are comprised of the Occupational Safety and Health Administration's Hazard Communication Standard in the United States, the Workplace Hazardous Materials Information System (WHMIS) in Canada, and the compilation of several European Union directives addressing classification, labeling of substances and preparations, and MSDSs in Europe. ^ A pretest posttest randomized study design was used, with the posttest being comparable to an open book test. The results of this research indicated that only about two-thirds of the information on the MSDSs was comprehended by the workers with a significant difference identified among study participants based on country comparisons. This data was fairly consistent with the results of previous MSDS comprehensibility studies conducted in the United States. There was no significant difference in the comprehension level among study participants when taking into account the international hazard communication standard that the MSDS complied with. Marginally, age, education level and experience level did not have a significant impact on the comprehension level. ^ Participants did find MSDSs to be satisfactory in providing the information needed to protect them regardless of their views on the readability and formatting of MSDSs. The health-related information was the least comprehended as less than half of it was comprehended on the basis of the responses. The findings from this research suggest that there is much work needed yet to make MSDSs more comprehensible on a global basis, particularly regarding health-related information. ^
Resumo:
In the United States, “binge” drinking among college students is an emerging public health concern due to the significant physical and psychological effects on young adults. The focus is on identifying interventions that can help decrease high-risk drinking behavior among this group of drinkers. One such intervention is Motivational interviewing (MI), a client-centered therapy that aims at resolving client ambivalence by developing discrepancy and engaging the client in change talk. Of late, there is a growing interest in determining the active ingredients that influence the alliance between the therapist and the client. This study is a secondary analysis of the data obtained from the Southern Methodist Alcohol Research Trial (SMART) project, a dismantling trial of MI and feedback among heavy drinking college students. The present project examines the relationship between therapist and client language in MI sessions on a sample of “binge” drinking college students. Of the 126 SMART tapes, 30 tapes (‘MI with feedback’ group = 15, ‘MI only’ group = 15) were randomly selected for this study. MISC 2.1, a mutually exclusive and exhaustive coding system, was used to code the audio/videotaped MI sessions. Therapist and client language were analyzed for communication characteristics. Overall, therapists adopted a MI consistent style and clients were found to engage in change talk. Counselor acceptance, empathy, spirit, and complex reflections were all significantly related to client change talk (p-values ranged from 0.001 to 0.047). Additionally, therapist ‘advice without permission’ and MI Inconsistent therapist behaviors were strongly correlated with client sustain talk (p-values ranged from 0.006 to 0.048). Simple linear regression models showed a significant correlation between MI consistent (MICO) therapist language (independent variable) and change talk (dependent variable) and MI inconsistent (MIIN) therapist language (independent variable) and sustain talk (dependent variable). The study has several limitations such as small sample size, self-selection bias, poor inter-rater reliability for the global scales and the lack of a temporal measure of therapist and client language. Future studies might consider a larger sample size to obtain more statistical power. In addition the correlation between therapist language, client language and drinking outcome needs to be explored.^
Resumo:
The objectives of this study were to identify and measure the average outcomes of the Open Door Mission's nine-month community-based substance abuse treatment program, identify predictors of successful outcomes, and make recommendations to the Open Door Mission for improving its treatment program.^ The Mission's program is exclusive to adult men who have limited financial resources: most of which were homeless or dependent on parents or other family members for basic living needs. Many, but not all, of these men are either chemically dependent or have a history of substance abuse.^ This study tracked a cohort of the Mission's graduates throughout this one-year study and identified various indicators of success at short-term intervals, which may be predictive of longer-term outcomes. We tracked various levels of 12-step program involvement, as well as other social and spiritual activities, such as church affiliation and recovery support.^ Twenty-four of the 66 subjects, or 36% met the Mission's requirements for success. Specific to this success criteria; Fifty-four, or 82% reported affiliation with a home church; Twenty-six, or 39% reported full-time employment; Sixty-one, or 92% did not report or were not identified as having any post-treatment arrests or incarceration, and; Forty, or 61% reported continuous abstinence from both drugs and alcohol.^ Five research-based hypotheses were developed and tested. The primary analysis tool was the web-based non-parametric dependency modeling tool, B-Course, which revealed some strong associations with certain variables, and helped the researchers generate and test several data-driven hypotheses. Full-time employment is the greatest predictor of abstinence: 95% of those who reported full time employment also reported continuous post-treatment abstinence, while 50% of those working part-time were abstinent and 29% of those with no employment were abstinent. Working with a 12-step sponsor, attending aftercare, and service with others were identified as predictors of abstinence.^ This study demonstrates that associations with abstinence and the ODM success criteria are not simply based on one social or behavioral factor. Rather, these relationships are interdependent, and show that abstinence is achieved and maintained through a combination of several 12-step recovery activities. This study used a simple assessment methodology, which demonstrated strong associations across variables and outcomes, which have practical applicability to the Open Door Mission for improving its treatment program. By leveraging the predictive capability of the various success determination methodologies discussed and developed throughout this study, we can identify accurate outcomes with both validity and reliability. This assessment instrument can also be used as an intervention that, if operationalized to the Mission’s clients during the primary treatment program, may measurably improve the effectiveness and outcomes of the Open Door Mission.^
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
These three manuscripts are presented as a PhD dissertation for the study of using GeoVis application to evaluate telehealth programs. The primary reason of this research was to understand how the GeoVis applications can be designed and developed using combined approaches of HC approach and cognitive fit theory and in terms utilized to evaluate telehealth program in Brazil. First manuscript The first manuscript in this dissertation presented a background about the use of GeoVisualization to facilitate visual exploration of public health data. The manuscript covered the existing challenges that were associated with an adoption of existing GeoVis applications. The manuscript combines the principles of Human Centered approach and Cognitive Fit Theory and a framework using a combination of these approaches is developed that lays the foundation of this research. The framework is then utilized to propose the design, development and evaluation of “the SanaViz” to evaluate telehealth data in Brazil, as a proof of concept. Second manuscript The second manuscript is a methods paper that describes the approaches that can be employed to design and develop “the SanaViz” based on the proposed framework. By defining the various elements of the HC approach and CFT, a mixed methods approach is utilized for the card sorting and sketching techniques. A representative sample of 20 study participants currently involved in the telehealth program at the NUTES telehealth center at UFPE, Recife, Brazil was enrolled. The findings of this manuscript helped us understand the needs of the diverse group of telehealth users, the tasks that they perform and helped us determine the essential features that might be necessary to be included in the proposed GeoVis application “the SanaViz”. Third manuscript The third manuscript involved mix- methods approach to compare the effectiveness and usefulness of the HC GeoVis application “the SanaViz” against a conventional GeoVis application “Instant Atlas”. The same group of 20 study participants who had earlier participated during Aim 2 was enrolled and a combination of quantitative and qualitative assessments was done. Effectiveness was gauged by the time that the participants took to complete the tasks using both the GeoVis applications, the ease with which they completed the tasks and the number of attempts that were taken to complete each task. Usefulness was assessed by System Usability Scale (SUS), a validated questionnaire tested in prior studies. In-depth interviews were conducted to gather opinions about both the GeoVis applications. This manuscript helped us in the demonstration of the usefulness and effectiveness of HC GeoVis applications to facilitate visual exploration of telehealth data, as a proof of concept. Together, these three manuscripts represent challenges of combining principles of Human Centered approach, Cognitive Fit Theory to design and develop GeoVis applications as a method to evaluate Telehealth data. To our knowledge, this is the first study to explore the usefulness and effectiveness of GeoVis to facilitate visual exploration of telehealth data. The results of the research enabled us to develop a framework for the design and development of GeoVis applications related to the areas of public health and especially telehealth. The results of our study showed that the varied users were involved with the telehealth program and the tasks that they performed. Further it enabled us to identify the components that might be essential to be included in these GeoVis applications. The results of our research answered the following questions; (a) Telehealth users vary in their level of understanding about GeoVis (b) Interaction features such as zooming, sorting, and linking and multiple views and representation features such as bar chart and choropleth maps were considered the most essential features of the GeoVis applications. (c) Comparing and sorting were two important tasks that the telehealth users would perform for exploratory data analysis. (d) A HC GeoVis prototype application is more effective and useful for exploration of telehealth data than a conventional GeoVis application. Future studies should be done to incorporate the proposed HC GeoVis framework to enable comprehensive assessment of the users and the tasks they perform to identify the features that might be necessary to be a part of the GeoVis applications. The results of this study demonstrate a novel approach to comprehensively and systematically enhance the evaluation of telehealth programs using the proposed GeoVis Framework.