3 resultados para Occupational Mortality
em DigitalCommons@The Texas Medical Center
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^
Resumo:
The study of obesity and its causes has evolved into one of the most important public health issues in the United States (Office of Disease Prevention and Health Promotion, 2007). Obesity is linked to several chronic conditions, such as cardiovascular disease, diabetes and some cancers (National Center for Chronic Disease Prevention and Health Promotion, 2008b) and the public health concern resides in the present morbidity and mortality associated with obesity and related conditions (National Heart, Lung and Blood Institute, 1998). Furthermore, obesity and its related conditions present economic challenges to employers in terms of medical health care, sick leave, short-term disability and long-term disability benefits utilized by employees (Østbye, Dement, and Krause, 2007). Recently, articles covering intervention programs targeting obesity in the occupational setting have surfaced in the body of scientific literature. The increased interest in this area stems from the fact that employees in the United States spend more time in the work environment than many industrialized nations, including Japan and most of Western Europe (Organisation for Economic Co-operation and Development, 2006). Moreover, scientific literature supports the idea of investing in healthy human capital to promote productivity and output from employees (Berger, Howell, Nicholson, & Sharda, 2003). The time spent in the work environment, the business need for healthy employees, and the public health concern create an opportunity for planning, implementation and analysis of interventions for effectiveness. This paper aims to identify those intervention programs that focus on the occupational setting related to obesity, to analyze the overall effect of diet, physical fitness and behavioral change interventions targeting overweight and obesity in the occupational setting, and to evaluate the details and effectiveness of components, such as, intervention setting, target participant group, content, industry and length of follow up. Once strengths and weaknesses of the interventions are evaluated, ideas will be suggested for implementation in the future.^
Resumo:
Evaluation of a series of deaths due to a particular disease is a frequently requested task in occupational epidemiology. There are several techniques available to determine whether a series represents an occupational health problem. Each of these techniques, however, is subject to certain limitations including cost, applicability to a given situation, feasibility relative to available resources, or potential for bias. In light of these problems, a technique was developed to estimate the standardized mortality ratio at a greatly reduced cost. The technique is demonstrated by its application in the investigation of brain cancer among employees of a large chemical company. ^