26 resultados para O-antigen Ligase
em DigitalCommons@The Texas Medical Center
Resumo:
Persistently low white blood cell count (WBC) and neutrophil count is a well-described phenomenon in persons of African ancestry, whose etiology remains unknown. We recently used admixture mapping to identify an approximately 1-megabase region on chromosome 1, where ancestry status (African or European) almost entirely accounted for the difference in WBC between African Americans and European Americans. To identify the specific genetic change responsible for this association, we analyzed genotype and phenotype data from 6,005 African Americans from the Jackson Heart Study (JHS), the Health, Aging and Body Composition (Health ABC) Study, and the Atherosclerosis Risk in Communities (ARIC) Study. We demonstrate that the causal variant must be at least 91% different in frequency between West Africans and European Americans. An excellent candidate is the Duffy Null polymorphism (SNP rs2814778 at chromosome 1q23.2), which is the only polymorphism in the region known to be so differentiated in frequency and is already known to protect against Plasmodium vivax malaria. We confirm that rs2814778 is predictive of WBC and neutrophil count in African Americans above beyond the previously described admixture association (P = 3.8 x 10(-5)), establishing a novel phenotype for this genetic variant.
Resumo:
The length of time that integral membrane proteins reside on the plasma membrane is regulated by endocytosis, a process that can inactivate these proteins by removing them from the membrane and may ultimately result in their degradation. Proteins are internalized and pass through multiple distinct intracellular compartments where targeting decisions determine their fate. Membrane proteins initially enter early endosomes, and subsequently late endosomes/multivesicular bodies (MVBs), before being degraded in the lysosome. The MVB is a subset of late endosomes characterized by the appearance of small vesicles in its luminal compartment. These vesicles contain cargo proteins sorted from the limiting membrane of the MVB. Proteins not sorted into luminal vesicles remain on the MVB membrane, from where they may be recycled back to the plasma membrane. In the case of receptor tyrosine kinases (RTKs), such as epidermal growth factor (EGF) receptor, this important sorting step determines whether a protein returns to the surface to participate in signaling, or whether its signaling properties are inactivated through its degradation in the lysosome. Hrs is a protein that resides on endosomes and is known to recruit sorting complexes that are vital to this sorting step. These sorting complexes are believed to recognize ubiquitin as sorting signals. However, the link between MVB sorting machinery and the ubiquitination machinery is not known. Recently, Hrs was shown to recruit and bind an E3 ubiquitin ligase, UBE4B, to endosomes. In an assay that is able to measure cargo movement, the disruption of the Hrs-UBE4B interaction showed impaired sorting of EGF receptor into MVBs. My hypothesis is that UBE4B may be the connection between MVB sorting and ubiquitination. This study addresses the role of UBE4B in the trafficking and ubiquitination of EGF receptor. I created stable cell lines that either overexpresses UBE4B or expresses a UBE4B with no ligase activity. Levels of EGF receptor were analyzed after certain periods of ligand-induced receptor internalization. I observed that higher expression levels of UBE4B correspond to increased degradation of EGF receptor. In an in vitro ubiquitination assay, I also determined that UBE4B mediates the ubiquitination of EGF receptor. These data suggest that UBE4B is required for EGFR degradation specifically because it ubiquitinates the receptor allowing it to be sorted into the internal vesicles of MVBs and subsequently degraded in lysosomes.
Resumo:
Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.
Resumo:
Vaccines which use the strategy of fusing adjuvant murine â-defensin2 (mBD2) to an antigen in order to elicit stronger anti-antigen immune responses are referred to as murine â-defensin2 (mBD2) vaccines. Previous studies have validated the potential of mBD2 vaccines, thus in this study we focus on increasing vaccine efficacy as well as mechanism elucidation. Initially, we demonstrate superior IFN-ã release levels by antigen specific effector T cells when antigen is crosspresented by dendritic cells (DC) which absorbed mBD2 vaccine (mBD2 fused antigen protein) over antigen alone. We move unto an in vivo model and note significant increases in the expansion of antigen specific class I T cells but not class II T cells when receiving mBD2 vaccine over antigen alone. Further, knowing mBD2’s link with CC chemokine receptor 6 (CCR6) and Toll-like receptor 4 (TLR4) we note that this enhanced class I T cell expansion is CCR6 independent but TLR4 dependent. With anti-tumor responses desired, we demonstrate in tumor protection experiments with mice, compelling tumor protection when combining adoptive T cell therapy and mBD2 vaccine immunization. We further note that mBD2 vaccines are not limited by the antigen and characterize a viable strategy for enhancing tumor antigen immunogenicity.
Resumo:
Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.
Resumo:
14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediator such as Akt. Here, we identify Mammalian Constitutive Photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasome degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1’s turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival by suppressing FOXO, an Akt target, transcriptional activity. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.
Resumo:
IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most lethal single infectious agent afflicting man today causing 2 million deaths per year. The World Health Organization recommends a vaccine as the best option to prevent this disease. The current vaccine, BCG, has a variable efficacy and does not protect adults. It is known that BCG vaccine becomes sequestered in special phagosome compartments of macrophages that do not fuse with lysosomes. Since lysosome fusion is necessary for peptide production and T cell priming leading to protective TH1 immunity, we hypothesized that vaccine efficacy is reduced and occurs perhaps due to non-lysosome dependent mechanisms. We therefore proposed an in depth analysis of phagosome environment, and its proteome to unravel mechanisms of antigen processing and presentation. We initially discovered that three mechanisms of pH regulation including vacuolar proton ATPase, phagocyte oxidase and superoxide dismutase (SOD) secretion from BCG vaccine affect antigen processing within phagosomes. These studies led to the discovery that a mutant of BCG vaccine which lacked SOD was a better vaccine. Subsequently, the proteomic analysis of vaccine phagosomes led to the discovery of novel protease (γ-secretase) enriched on BCG vaccine phagosomes. We then demonstrated that these proteases generated a peptide from the BCG vaccine which was presented through the MHC-II pathway to T cells and induced a TH1 response. The specificity of antigen production from γ-secretase was confirmed through siRNA knockdown of the components of the protease namely, nicastrin, presenilin and APH, which led to a decrease in antigen presentation. We therefore conclude that, even though BCG phagosomes are sequestered and do not fuse with lysosomes to generate peptide antigens, there are complex and novel in situ mechanisms within phagosomes that are capable of generating an immune response. We conclude that TH1 immunity to BCG vaccine arises mostly due to non-lysosome dependent immune mechanisms of macrophages and dendritic cells.
Resumo:
Background and purpose. Sialyl-Tn(STn) represents an aberrantly glycosylated mucin epitope which is expressed in breast cancer and other adenocarcinomas and is an important target for the development of novel immunotherapeutic approaches. It is a marker of adverse prognosis in colon and ovarian cancer, but information about its prognostic impact in breast cancer is limited. The primary aim of the present study was to investigate the influence of STn expression on outcome of invasive breast cancer in 207 women who received anthracyline-containing adjuvant chemotherapy in a prospective clinical trial.^ Methods. Expression of STn was determined by an immunohistochemical procedure using the B72.3 monoclonal antibody. The extent of staining was determined by two observers using a 0 through 4 point scale, with 0 representing $<$5% of cells staining; 1: 5-25%; 2: 26-50%; 3: 51-75%; and 4: $>$75%. Intraobserver and interobserver agreement was.78-.92 (kappa). Kaplan-Meier and Cox proportional regression survival analyses were used to compare STn-negative and STn-positive patients.^ Results. Forty-eight (23%) of the 207 specimens demonstrated positive staining of STn. With a median follow-up of five years, STn-positivity was associated with a higher 5-year recurrence-free survival time than STn-negativity (67% vs. 80%, respectively; p = 0.03). STn expression was significantly associated with menopausal status (p = 0.04) but not other conventional prognostic markers. The risk of breast cancer recurrence and death was assessed by multivariate Cox regression analyses with adjustment for lymph node status, tumor size, menopausal status, hormone receptor status, nuclear grade, S-phase fraction and ploidy. In the final multivariate model for recurrence-free survival, the three factors that showed prognostic significance were: lymph node status (hazard ratio (HR) 3.04, 95% confidence interval (CI) 1.08-8.49), STn expression (HR 2.02, 95% CI 1.09-3.73), and tumor size (HR 1.96, 95% CI 1.05-3.64). STn was also associated with worse overall survival (HR 2.16, 95% CI 0.95-4.92) in multivariate analysis.^ Conclusion. STn antigen was shown to be a predictor of poor outcome in breast cancer. This tumor-associated antigen may be a valuable marker for identifying individuals at high risk of developing recurrent disease who may benefit from adjuvant therapy targeted at STn following definitive local therapy. Further study is needed to clarify the biologic and prognostic role of STn in breast cancer. ^
Resumo:
Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in Escherichia coli and were screened with serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Thirty-eight immunopositive cosmid clones reacted with at least two of the patient sera and contained distinct inserts based on their DNA restriction patterns. These were chosen for further subcloning in a pBluescript SK ($-$) vector. Each sublibrary was screened with one of the five sera. Analysis of sequences from the immunopositive subclones revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones and one such cosmid clone, TX5159, produced an antigenic polysaccharide in Escherichia coli. The insert of TX5159 was found to contain a multicistronic gene cluster containing genes similar to those involved in the biosynthesis and export of polysaccharides from both Gram-positive and Gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of TX5159. RT-PCR of genes within the cluster with total RNA from OG1RF showed that these genes are transcribed. The polysaccharide was detected in two recently reported E. faecalis mucoid strains using specific antibody, but not in the other strains tested. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. ^
Resumo:
The etiological role of enterotoxigenic E. coli (ETEC) in diarrheal diseases of man and domestic animals is firmly established. Besides the production of enterotoxins (ST and LT), ETEC produces other important virulence factors; the colonization factor antigens (CFAs). CFAs mediate the attachment of ETEC to the epithelial cells of the small intestine, and this favors colonization by the bacteria and facilitates delivery of the enterotoxins to the intestinal cells.^ The production of enterotoxin and CFA is determined by plasmids and has been found to be restricted to a select number of E. coli serotypes.^ In this work, plasmid DNA analysis was performed in twenty-three CFA/II-producing enterotoxigenic Escherichia coli strains and their spontaneous CFA/II-negative derivatives. In some cases, strains lost the high molecular weight plasmid and also the ability to produce CFA/II, ST and LT. In other cases there was a deletion of the plasmid, which produced strains that were CFA/II('-), ST('-), LT('-) or CFA/II('-), ST('+), LT('+).^ The CFA/II plasmid from strain PB-176 (06:H16:CFA/II('+), ST('+), LT('+)) was transferred by transformation into E. coli K12 with concomitant transfer of the three characteristics: CFA/II, ST and LT.^ A physical map of the prototype CFA/II:ST:LT (pMEP60) plasmid was constructed by restriction endonuclease analysis and compared to plasmids from three other CFA/II-producing strains. A CFA/II-negative (but ST and LT positive) deletion derivative of pMEP60 (pMEP30) was also included in the map. The four CFA/II plasmids analyzed had a common region of approximately 30 kilobase pairs. The toxin genes were approximately 5 kbp apart and about 20 kbp from the common region. The information given by this physical map could be of great value when constructing a clone that will express the CFA/II genes but not the toxin genes. ^