3 resultados para Numerical Algorithms and Problems
em DigitalCommons@The Texas Medical Center
Resumo:
Background. Diabetes places a significant burden on the health care system. Reduction in blood glucose levels (HbA1c) reduces the risk of complications; however, little is known about the impact of disease management programs on medical costs for patients with diabetes. In 2001, economic costs associated with diabetes totaled $100 billion, and indirect costs totaled $54 billion. ^ Objective. To compare outcomes of nurse case management by treatment algorithms with conventional primary care for glycemic control and cardiovascular risk factors in type 2 diabetic patients in a low-income Mexican American community-based setting, and to compare the cost effectiveness of the two programs. Patient compliance was also assessed. ^ Research design and methods. An observational group-comparison to evaluate a treatment intervention for type 2 diabetes management was implemented at three out-patient health facilities in San Antonio, Texas. All eligible type 2 diabetic patients attending the clinics during 1994–1996 became part of the study. Data were obtained from the study database, medical records, hospital accounting, and pharmacy cost lists, and entered into a computerized database. Three groups were compared: a Community Clinic Nurse Case Manager (CC-TA) following treatment algorithms, a University Clinic Nurse Case Manager (UC-TA) following treatment algorithms, and Primary Care Physicians (PCP) following conventional care practices at a Family Practice Clinic. The algorithms provided a disease management model specifically for hyperglycemia, dyslipidemia, hypertension, and microalbuminuria that progressively moved the patient toward ideal goals through adjustments in medication, self-monitoring of blood glucose, meal planning, and reinforcement of diet and exercise. Cost effectiveness of hemoglobin AI, final endpoints was compared. ^ Results. There were 358 patients analyzed: 106 patients in CC-TA, 170 patients in UC-TA, and 82 patients in PCP groups. Change in hemoglobin A1c (HbA1c) was the primary outcome measured. HbA1c results were presented at baseline, 6 and 12 months for CC-TA (10.4%, 7.1%, 7.3%), UC-TA (10.5%, 7.1%, 7.2%), and PCP (10.0%, 8.5%, 8.7%). Mean patient compliance was 81%. Levels of cost effectiveness were significantly different between clinics. ^ Conclusion. Nurse case management with treatment algorithms significantly improved glycemic control in patients with type 2 diabetes, and was more cost effective. ^
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Cryoablation for small renal tumors has demonstrated sufficient clinical efficacy over the past decade as a non-surgical nephron-sparing approach for treating renal masses for patients who are not surgical candidates. Minimally invasive percutaneous cryoablations have been performed with image guidance from CT, ultrasound, and MRI. During the MRI-guided cryoablation procedure, the interventional radiologist visually compares the iceball size on monitoring images with respect to the original tumor on separate planning images. The comparisons made during the monitoring step are time consuming, inefficient and sometimes lack the precision needed for decision making, requiring the radiologist to make further changes later in the procedure. This study sought to mitigate uncertainty in these visual comparisons by quantifying tissue response to cryoablation and providing visualization of the response during the procedure. Based on retrospective analysis of MR-guided cryoablation patient data, registration and segmentation algorithms were investigated and implemented for periprocedural visualization to deliver iceball position/size with respect to planning images registered within 3.3mm with at least 70% overlap and a quantitative logit model was developed to relate perfusion deficit in renal parenchyma visualized in verification images as a result of iceball size visualized in monitoring images. Through retrospective study of 20 patient cases, the relationship between likelihood of perfusion loss in renal parenchyma and distance within iceball was quantified and iteratively fit to a logit curve. Using the parameters from the logit fit, the margin for 95% perfusion loss likelihood was found to be 4.28 mm within the iceball. The observed margin corresponds well with the clinically accepted margin of 3-5mm within the iceball. In order to display the iceball position and perfusion loss likelihood to the radiologist, algorithms were implemented to create a fast segmentation and registration module which executed in under 2 minutes, within the clinically-relevant 3 minute monitoring period. Using 16 patient cases, the average Hausdorff distance was reduced from 10.1mm to 3.21 mm with average DSC increased from 46.6% to 82.6% before and after registration.