2 resultados para Null model

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical medical librarianship is entering its second decade, but little evaluative data has accrued in the literature. Variations from the original programs and novel new approaches have insured the survival of the program so far. The clinical librarian (CL) forms a vital link between the library and the health care professional, operating as an important information transfer agent. However, to further insure the survival of these vital programs, hard evaluative evidence is needed. The University of Texas Medical Branch (UTMB) at Galveston began a CL Program in 1978/79. An extensive three-year pre/post evaluation study was conducted using a specifically developed evaluation model, which, if adopted by others, will provide the needed comparative data. Both a pilot study, or formative evaluation, and a summative evaluation were conducted. The results of this evaluation confirmed many of the conclusions reported by other CL programs. Eight hypotheses were proposed at the beginning of this study. Data were collected and used to support acceptance or rejection of the null hypotheses, and conclusions were drawn according to the results. Implications relevant to the study conclusions and future trends in medical librarianship are also discussed in the closing chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.