13 resultados para Not angels, but Anglicans : a history of Christianity in the British Isles

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Child abuse and neglect are universal risk factors for delinquency, violence and aggression; this phenomenon is known as the cycle of violence. Despite a wide body of research demonstrating this phenomenon, the processes which mediate this relationship remain largely unknown. One potentially relevant result of abuse and neglect may be disruptions in the development of the body’s stress response, specifically the function of the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA-axis, and its end-product, cortisol, may play a role in regulating aggressive behavior, but this function may be disrupted following abuse and neglect. Another risk factor for aggression, psychopathy, may mediate the cycle of violence or independently contribute to aggressive behavior. This study examined the relationship between child abuse and neglect, HPA-axis function, psychopathy and aggression. History of abuse was measured using a self-report questionnaire, the Childhood Trauma Questionnaire. Using a within-subject, placebo-controlled, counter-balanced dosing design, 67 adults were given an acute dose of 20mg cortisol as a challenge to the HPA-axis. Following dosing, measures of cortisol response were obtained through saliva samples, and state-aggressive behavior was measured by a laboratory task, the Point-Subtraction Aggression Paradigm (PSAP). Basal measures of cortisol were obtained prior to dosing. Psychopathy and a trait-measure of aggression were assessed through self-report questionnaires. PSAP data and trait-aggression scores were normalized and summed for an overall aggression score. Linear regression analyses indicated that a history of abuse and neglect robustly predicted aggression, supporting the cycle of violence hypothesis. Further, abuse and neglect predicted a diminished HPA-axis response to the cortisol challenge. Although a diminished HPA-axis response significantly predicted increased aggression, mediation analysis revealed that HPA-axis reactivity did not mediate a significant portion of the effect of abuse and neglect on aggression. However, HPA-axis reactivity did mediate part of the effect, indicating that HPA-axis function may be a factor in the cycle of violence. Psychopathy robustly predicted increased aggression. Although the results indicate that cortisol, psychopathy and HPA-axis function are involved in the cycle of violence, further research is required to better understand the complex interaction of these factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown. Here, we identify sine oculis-related homeobox 3 (Six3) as a crucial player in this process in mice. In Six3 conditional-mutant mouse embryos, specification of the neuroretina was abrogated, but that of the retinal pigmented epithelium was normal. Conditional deletion of Six3 did not affect the initial development of the optic vesicle but did arrest subsequent neuroretina specification. Ectopic rostral expansion of Wnt8b expression was the major response to Six3 deletion and the leading cause for the specific lack of neuroretina, as ectopic Wnt8b expression in transgenic embryos was sufficient to suppress neuroretina specification. Using chromatin immunoprecipitation assays, we identified Six3-responsive elements in the Wnt8b locus and demonstrated that Six3 directly repressed Wnt8b expression in vivo. Our findings provide a molecular framework to the program leading to neuroretina differentiation and may be relevant for the development of novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of E2F transcription factors in the processes of proliferation and apoptosis are well established. E2F1, but not other E2F family members, is also phosphorylated and stabilized in response to various forms of DNA damage to regulate the expression of cell cycle and pro-apoptotic genes. E2F1 also relocalizes and forms foci at sites of DNA double-strand breaks but the function of E2F1 at sites of damage is still unknown. Here I reveal that E2F1 deficiency leads to increased spontaneous DNA break and impaired recovery following exposure to ionizing radiation. In response to DNA double-strand breaks, NBS1 phosphorylation and foci formation are defective in cells lacking E2F1, but NBS1 expression levels are unaffected. Moreover, it was observed that an association between NBS1 and E2F1 is increased in response to DNA damage, suggesting that E2F1 may promote NBS1 foci formation through a direct or indirect interaction at sites of DNA breaks. E2F1 deficient cells also display impaired foci formation of RPA and Rad51, which suggests a defect in DNA end resection and formation of single-stranded DNA at DNA double-strand breaks. I also found E2F1 status affects foci formation of the histone acetyltransferase GCN5 in response to DNA double-strand breaks. E2F1 is phosphorylated at serine 31 (serine 29 in mouse) by the ATM kinase as part of the DNA damage response. To investigate the importance of this event, our lab developed an E2F1 serine 29 mutant mouse model. I find that E2F1 serine 29 mutant cells show loss of E2F1 foci formation in response to DNA double-strand breaks. Furthermore, DNA repair and NBS1 foci formation are impaired in E2f1S29A/S29A cells. Taken together, my results indicate novel roles for E2F1 in the DNA damage response, which may directly promote DNA repair and genome maintenance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane bound, respiratory nitrate reductase in Escherichia coli is composed of three subunits, αβγ. The active complex is anchored to the membrane by membrane-integrated γ subunit and can reduce nitrate to nitrite with membrane quinones, (ubiquinone or menaquinone) as physiological electron donors. The transfer of electrons through the complex is thought to involve the sequence: membrane quinols → b-type hemes (γ subunit) → Fe-S centers (β subunit) → molybdopterin (α subunit) → nitrate. The enzyme can be assayed with the artificial electron donor reduced methyl viologen (MVH) which transfers electrons directly to the molybdopterin cofactor. These studies have focused on the possible role of protein-bound menaquinone in the structure and function of this multisubunit complex. ^ Nitrate reductase was purified as two distinct forms; after solubilization of membrane proteins with detergents, purification rendered an αβγ complex (holoenzyme) which catalyzes nitrate reduction with MVH or the quinols analogs, menadiol and duroquinol, as electron donors. Alternatively, heat-treatment of the membranes in the absence of detergents and subsequent purification of the active enzyme produced an αβ complex, which reduces nitrate only with MVH as electron donor. The active αβ dimer was also separated from γ subunit by heat treatment of the holoenzyme. ^ Menaquinone-9 was isolated directly from the purified αβ complex, and identified by mass spectrometry. Based on the composition of the membrane quinone pool, it was concluded that menaquinone-9 is sequestered from the membrane pool in a specifically protein-bound form. ^ The role of the bound menaquinone in the structure-function of nitrate reductase was also investigated, along with its participation in UV-light inactivation of the enzyme. Menaquinone-depleted nitrate reductase from a menaquinone deficient mutant retained activity with all electron donors and it remained sensitive to UV inactivation. However, the MVH-nitrate reductase activity and the rate of UV inactivation of the enzyme were significantly reduced and the optical properties of the enzyme were modified by the absence of the bound menaquinone-9. ^ Menaquinone-9 is not absolutely required for electron transfer in nitrate reductase but it appears to be specifically-bound during assembly of the complex and to enhance the transfer of electrons through the complex. The possible plasticity of the functional electron transfer pathway in nitrate reductase is discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) is an S-shaped or curved gram-negative bacterium that is mostly found in the human stomach. H. pylori causes gastritis in adults and children, which can lead to gastric ulcers or risk of cancer. Transmission of this bacterial infection remains to be unknown but is mostly acquired during childhood. Little is known about the effect H. pylori has on growth in children. Although some studies have reported that H. pylori is associated with subnormal growth, the association of H. pylori with growth retardation and malnutrition is poorly described. Data from this study comes from The Pasitos Cohort Study which draws its population from three border communities which include Socorro and San Elizario in Texas, as well as Ciudad Juarez, Chihuahua, Mexico. Birth documentation was obtained for 803 infants and 472 entered follow-up. This cohort study allowed us to assess the growth of children from 6 months to the seventh anniversary, and describe the prevalence of underweight, short stature and overweight in the study population. We also tested the hypothesis that children in the Pasitos Cohort Study who were ever infected with H. pylori show an increased risk of growth retardation or malnutrition at 66 months of age. Using the 2000 CDC Growth Reference, we found that the mean BMI of the study population increased as children grew older, while the mean of their height for age decreased slightly. The proportion of children who were classified as of short stature was under 5%, while those considered underweight were less than 10% at selected six-months of age intervals. Using the subset of children who were 66 months of age we found that the risk of underweight was higher among those who ever tested positive for H. pylori infection using the urea breath test; however, due to small numbers of children with 'wasting' this difference was not statistically significant. Moreover, since the six cases of under weight occurred among children of low socio-economic status we could not rule out potential confounding. The risk of developing short stature was not different among those ever infected and those who never tested positive for H. pylori infection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphocyte development requires the assembly of diversified antigen receptor complexes generated by the genetically programmed V(D)J recombination event. Because germline DNA is cut, introducing potentially dangerous double-stranded breaks (DSBs) and rearranged prior to repair, its activity is limited to the non-cycling stages of the cell cycle, G0/G1. The potential involvement of a key mediator, Ataxia Telangiectasia Mutated or ATM, in the DNA damage response (DDR) and cell cycle checkpoints has been implicated in recombination, but its role is not fully understood. Thymic lymphomas from ATM deficient mice contain clonal chromosomal translocations involving the T-cell antigen receptor (TCR). A previous report found ATM and its downstream target p53 associated with V(D)J intermediates, suggesting the DDR senses recombination. In this study, we sought to understand the role of ATM in V(D)J recombination. Developing thymocytes from ATM deficient mice were analyzed according to the cell cycle to detect V(D)J intermediates. Examination of all TCR loci in the non-cycling (G0/G1) and cycling (S/G2/M) fractions revealed the persistence of intermediates in ATM deficient thymocytes, contrary to the wild-type in which intermediates are found only during G0/G1. Further analysis found no defect in end-joining of intermediates, nor were they detected in developed T-cells. Based upon the presence of persisting intermediates, the recombination initiating nuclease Rag-2 was examined; strict regulation limits it to G 0/G1. Rag-2 regulation was not affected by an ATM deficiency as Rag-2 expression remained contained within G0/G 1, indicating recombination is not continuous. To determine if an ATM deficiency affects recognition of V(D)J breaks, sites of recombination identified by a TCR locus or Rag expression were analyzed according to co-localization with a DDR factor phosphorylated immediately after DNA damage, phosphorylated H2AX (γH2AX). No differences in co-localization were found between the wild-type and ATM deficiency, demonstrating ATM deficient lymphocytes retain the ability to recognize DSBs. Together, these results suggest ATM is necessary in the cell cycle regulation of recombination but not essential for the identification of V(D)J breaks. ATM ensures the containment of intermediates within G0/G1 and maintains genomic stability of developing lymphocytes, emphasizing its fundamental role in preventing tumorigenesis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. There is currently a push to increase the number of minorities in cancer clinical trials in an effort to reduce cancer health disparities. Overcoming barriers to clinical trial research for minorities is necessary if we are to achieve the goals of Healthy People 2010. To understand the unexpectedly high rate of attrition in the A NULIFE study, the research team examined the perceived barriers to participation among minority women. The purpose of this study was to determine if either personal or study-related factors influenced healthy pre-menopausal women aged 25-45 years to terminate their participation in the A NULIFE Study. We hypothesized that personal factors were the driving forces for attrition rates in the prevention trial.^ Methods. The target population consisted of eligible women who consented to the A NULIFE study but withdrew prior to being randomized (N= 46), as well as eligible women who completed the informed consent process for the A NULIFE study and withdrew after randomization (N= 42). Examination of attrition rates in this study occurred at a time point when 10 out of 12 participant groups had completed the A NULIFE study. Data involving the 2 groups that were actively engaged in study activities were not used in this analysis. A survey instrument was designed to query the personal and study-related factors that were believed to have contributed to the decision to terminate participation in the A NULIFE study.^ Results. Overall, the highest ranked personal reason that influenced withdrawal from the study was being “too busy” with other obligations. The second highest ranked factor for withdrawal was work obligations. Whereas, more than half of all participants agreed that they were well-informed about the study and considered the study personnel to be approachable, 54% of participants would have been inclined to remain in the study if it were located at a local community center.^ Conclusions. Time commitment was likely a major factor for withdrawal from the A NULIFE study. Future investigators should implement trials within participant communities where possible. Also, focus group settings may provide detailed insight into factors that contribute to the attrition of minorities in cancer clinical trials.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of the impact of a disease on life expectancy is an important part of public health. Potential gains in life expectancy (PGLE) that can properly take into account the competing risks are an effective indicator for measuring the impact of the multiple causes of death. This study aimed to measure the PGLEs from reducing/eliminating the major causes of death in the USA from 2001 to 2008. To calculate the PGLEs due to the elimination of specific causes of death, the age-specific mortality rates for heart disease, malignant neoplasms, Alzheimer disease, kidney diseases and HIV/AIDS and life table constructing data were obtained from the National Center for Health Statistics, and the multiple decremental life tables were constructed. The PGLEs by elimination of heart disease, malignant neoplasms or HIV/AIDS continued decreasing from 2001 to 2008, but the PGLE by elimination of Alzheimer's disease or kidney diseases revealed increased trends. The PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of heart disease 2001–2008 were 0.336–0.299, 0.327–0.301, 0.344–0.295, 0.360–0.315, 0.349–0.317, 0.371–0.316,0.278–0.251, 0.272–0.255, and 0.282–0.246 respectively. Similarly, the PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of malignant neoplasms, Alzheimer's disease, kidney disease or HIV/AIDS 2001–2008 were also uncovered, respectively. Most diseases affect specific population, such as, HIV/AIDS tends to have a greater impact on people of working age, heart disease and malignant neoplasms have a greater impact on people over 65 years of age, but Alzheimer's disease and kidney diseases have a greater impact on people over 75 years of age. To measure the impact of these diseases on life expectancy in people of working age, partial multiple decremental life tables were constructed and the PGLEs were computed by partial or complete elimination of various causes of death during the working years. Thus, the results of the study outlined a picture of how each single disease could affect the life expectancy in age-, race-, or sex-specific population in USA. Therefore, the findings would not only assist to evaluate current public health improvements, but also provide useful information for future research and disease control programs.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The History of Pathology in Texas is the study of the changes of disease in Texas from the frontier days to the 1990s. Marilyn Miller Baker wrote the book for the Texas Society of Pathologists. The book was published in 1996 with a forward by Vernie A. Stembridge, MD, the Ashbel Smith Professor and Chairman Emeritus of Pathology at the University of Texas Southwestern Medical Center at Dallas. The book covers the story of pathology from the "performance of crude autopsies" on the frontier through the emergence of bacteriology and immunology and beyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.