8 resultados para Non-dominant limb

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

D1S1, an anonymous human DNA clone originally called (lamda)Ch4-H3 or (lamda)H3, was the first single copy mapped to a human chromosome (1p36) by in situ hybridization. The chromosomal assignment has been confirmed in other laboratories by repeating the in situ hybridization but not by another method. In the present study, hybridization to a panel of hamster-human somatic cell hybrids revealed copies of D1S1 on both chromosomes 1 and 3. Subcloning D1S1 showed that the D1S1 clone itself is from chromosome 3, and the sequence detected by in situ hybridization is at least two copies of part of the chromosome 3 copy. This finding demonstrates the importance of verifying gene mapping with two methods and questions the accuracy of in situ hybridization mapping.^ Non-human mammals have only one copy of D1S1, and the non-human primate D1S1 map closely resembles the human chromosome 3 copy. Thus, the human chromosome 1 copies appear to be part of a very recent duplication that occurred after the divergence between humans and the other great apes.^ A moderately informative HindIII D1S1 RFLP was mapped to chromosome 3. This marker and 12 protein markers were applied to a linkage study of autosomal dominant retinitis pigmentosa (ADRP). None of the markers proved linkage, but adding the three families examined to previously published data raises the ADRP:Rh lod score to 1.92 at (THETA) = 0.30. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Congenital limb defects are common birth defects occurring in approximately 2-7/10,000 live births. Because congenital limb defects are pervasive throughout all populations, and the conditions profoundly affect quality of life, they represent a significant public health concern. Currently there is a paucity of etiologic information in the literature regarding congenital limb reduction defects which represents a major limitation in developing treatment strategies as well as identifying high risk pregnancies. ^ Additionally, despite the fact that the majority of congenital limb reduction defects are isolated, most previous studies have not separated them from those occurring as part of a known syndrome or with multiple additional congenital anomalies of unknown etiology. It stands to reason that factors responsible for multiple congenital anomalies that happen to include congenital limb reduction defects may be quite different from those factors leading to an isolated congenital limb reduction defect. ^ As a first step toward gaining etiologic understanding, this cross-sectional study was undertaken to determine the birth prevalence and obtain demographic information about non-syndromic (isolated) congenital limb reduction defects that occurred in Texas from 1999-2001. ^ Methods. The study population included all infants/fetuses with isolated congenital limb reduction defects born in Texas during 1999-2001; the comparison population was all infants who were born to mothers who were residents of Texas during the same period of time. The overall birth prevalence of limb reduction defects was determined and adjusted for ethnicity, gender, site of defect (upper limb versus lower limb), county of residence, maternal age and maternal education. ^ Results. In Texas, the overall birth prevalence of isolated CLRDs was 2.1/10,000 live births (1.5 and 0.6/10,000 live births for upper limb and lower limb, respectively). ^ The risk of isolated lower limb CLRDs in Texas was significantly lower in females when gender was examined individually (crude prevalence odds ratio of 0.57, 95% CI of 0.36-0.91) as well as in relation to all other variables used in the analysis (adjusted prevalence odds ratio of 0.58, 95% CI of 0.36-0.93). ^ Harris County (which includes the Houston metropolitan area) had significantly lower risks of all (upper limb and lower limb combined) isolated CLRDs when examined in relation to other counties in Texas, with a crude prevalence odds ratio of 0.4 (95% CI: 0.29-0.72) and an adjusted prevalence odds ratio of 0.50 (95% CI: 0.31-0.80). The risk of isolated upper limb CLRDs was significantly lower in Harris County (crude prevalence odds ratio of 0.45, CI of 0.26-0.76 and adjusted prevalence odds ratio of 0.49, CI of 0.28-0.84). This trend toward decreased risk in Harris County was not observed for isolated lower limb reduction defects (adjusted prevalence odds ratio of 0.50, 95% confidence interval: 0.22-1.12). ^ Conclusions. The birth prevalence of isolated congenital limb reduction defects in Texas is in the lower limits of the range of rates that have been reported by other authors for other states (Alabama, Arkansas, California, Georgia, Hawaii, Iowa, Maryland, Massachusetts, North Carolina, Oklahoma, Utah, Washington) and other countries (Argentina, Australia, Austria, Bolivia, Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, Denmark, Ecuador, England, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Lithuania, Mexico, Norway, Paraguay, Peru, Spain, Scotland, Sweden, Switzerland, Uruguay, and Venezuela). In Texas, the birth prevalence of isolated congenital lower limb reduction defects was greater for males than females, while the birth prevalence of isolated congenital upper limb reduction defects was not significantly different between males and females. The reduced rates of limb reduction defects in Harris County warrant further investigation. This study has provided an important first step toward gaining etiologic understanding in the study of isolated congenital limb reduction defects. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underlying genetic defects of a congenital disease Nail-Patella Syndrome are loss-of-function mutations in the LMX1B gene. Lmx1b encodes a LIM-homeodomain transcription factor that is expressed specifically in the dorsal limb bud mesenchyme. Gain- and loss-of-function experiments suggest that Lmx1b is both necessary and sufficient to specify dorsal limb patterning. However, how Lmx1b coordinates patterning of the dorsal tissues in the limb, including muscle, skeleton and connective tissues, remains unknown. One possibility is that each tissue specifies its own pattern cell-autonomously, i.e., Lmx1b is expressed in tissues in which it functions and different tissues do not communicate with each other. Another possibility is that tissues that express Lmx1b interact with adjacent tissues and provide patterning information thereby directing the development of tissues non-cell-autonomously. Previous results showed that Lmx1b is expressed in limb connective tissue and skeleton, but is not expressed in muscle tissue. Moreover, muscles and muscle connective tissue are closely associated during development. Therefore, we hypothesize that Lmx1b controls limb muscle dorsal-ventral (DV) patterning through muscle connective tissue, but regulates skeleton and tendon/ligament development cell-autonomously. ^ To test this hypothesis, we first examined when and where the limb dorsal-ventral asymmetry is established during development. Subsequently, conditional knockout and overexpression experiments were performed to delete or activate Lmx1b in different tissues within the limb. Our results show that deletion of Lmx1b from whole limb mesenchyme results in all dorsal tissues, including muscle, tendon/ligament and skeleton, transforming into ventral structures. Skeleton-specific knockout of Lmx1b led to the dorsal duplication of distal sesamoid and metacarpal bones, but did not affect the pattern formation of other tissues, suggesting that Lmx1b controls skeleton development cell-autonomously. In addition, this skeleton-specific pattern alteration only occurs in distal limb tissues, not proximal limb tissues, indicating different regulatory mechanisms operate along the limb proximal-distal axis. Moreover, skeleton-specific ectopic expression of Lmx1b reveals a complementary skeletal-specific dorsalized phenotype. This result supports a cell-autonomous role for Lmx1b in dorsal-ventral skeletal patterning. This study enriched our understanding of limb development, and the insights from this research may also be applicable for the development of other organs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this dissertation research was to investigate potential mechanisms through which mutations in two ubiquitously expressed genes, inosine monophosphate dehydrogenase 1 (IMPDH1) and pre-mRNA processing factor 31 (PRPF31), cause autosomal dominant retinitis pigmentosa (adRP) but have no other apparent clinical consequences. Basic properties of the gene and gene product, such as expression and protein levels, were examined. The purpose of our research is to understand the genetic basis of inherited retinopathies such as retinitis pigmentosa (RP). RP is a heterogeneous retinal dystrophy that affects approximately one in 3,700 individuals, making it the most common heritable retinal degenerative disease worldwide. Currently, mutations in 35 genes are known to cause RP and additional loci have been mapped but the underlying gene is not yet known. Often the genes associated with RP are integral to the biological processes underlying vision, making their role in retinal disease easy to explain. However, the mechanisms by which other genes cause RP are not apparent, especially widely-expressed genes. For IMPDH1, this research characterized the enzymatic properties of retinal isoforms. Results show that the retinal isoforms have enzymatic functions similar to the previously known canonical IMPDH1 whether or not an adRP pigmentosa mutation is included in the protein. For PRPF31, this research tested the hypothesis that functional haploinsufficiency is the cause of disease and relates to nonpenetrance in some individuals. Studies in patients with known mutations show that haploinsufficiency is the likely cause of disease, however, we did not confirm that non-penetrant individuals are protected from disease via increased expression of the wild type allele. Information gleaned from these functional studies, and the testing methods developed in tandem, will contribute to future research on disease mechanism related to adRP. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is centered on applying molecular genetics to study pattern formation during animal development. More specifically, this thesis describes the functional studies of a LIM-homeodomain gene called lmx1b during murine embryogenesis. Lmx1b expression is restricted to the mid-hindbrain junction as well as to the dorsal mesenchyme of the limb, suggesting important functions during mid-hindbrain and limb development. To test these possibilities, lmx1b homozygous mutant mice were generated and their limb and CNS phenotypes examined. Lmx1b homozygous mutant mice exhibit a large reduction of mid-hindbrain structures, and that their limbs are symmetrical along the dorsal-ventral axis as the result of a dorsal to ventral transformation. Taken together, these studies define essential functions for lmx1b in mid-hindbrain patteming and in dorsal limb cell fate determination. However, the molecular mechanisms which accounts for these phenotypes are unknown, and whether lmx1b has same or distinctive functions during the mid-hindbrain and limb development is also unclear. ^ Recently, insight into molecular mechanisms of mid-hindbrain patterning and limb development has resulted from the identification of several factors with restricted expression patterns within these regions. These include the secreted factors wnt-1, fgf-8, wnt-7a and the transcription factors pax-2, and en-1. Targeted disruption of any of these genes in mice suggests that these genes might be involved in similar regulatory pathways. Analysis of the expression of these genes in lmx1b mutants demonstrates that lmxlb is not required for the initiation, but is required to maintain their expression at the mid-hindbrain junction. Thus, lmxlb is not required for specifying mid-hindbrain cell fates, rather, it functions to ensure the establishment or maintenance of a proper organizing center at the mid-hindbrain junction. Interestingly, lmxlb functions cell non-autonomously in chimera analysis, which indicates that lmx1b might regulate the expression of secreted factors such as wnt-1 and/or fgf-8 in the organizing center. In contrast, lmx1b functions cell autonomously in the dorsal limb to govern dorsal ventral limb development and its expression is regulated by with wnt-7a and en-1. However, single and double mutant analysis suggest that all three genes have partially overlapping functions as well as independent functions. The results point toward a complicated network of cross-talks among all three limb axes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellite instability (MSI) is a hallmark of the mutator phenotype associated with Hereditary Non-Polyposis Colon Cancer (HNPCC). The MSI-High (MSI-H) HNPCC population has been well characterized, but the microsatellite low and stable (MSI-L/MSS) HNPCC population is much less understood. We hypothesize there are significant levels of MSI in HNPCC DNA classified as MSI-L/MSS, but no single variant allele makes up a sufficient population in the tumor DNA to be detected by standard analysis. Finding variants would suggest there is a mutator phenotype for the MSI-L/MSS HNPCC population that is distinct from the MSI-H HNPCC populations. This study quantified and compared MSI in HNPCC patients previously shown to be MSI-H, MSI-L/MSS and an MSI-H older, sporadic colorectal cancer patient. Small-pool Polymerase Chain Reactions (SP-PCRs) were conducted where the DNAs from each sample and controls are diluted into multiple pools, each containing approximately single genome equivalents. At least 100 alleles/sample were studied at six microsatellite loci. Mutant fragments were identified, quantified, and compared using Poisson statistics. Most of the variants were small deletions or insertions, with more mutants being deletions, as has been previously described in yeast and transgenic mice. SP-PCR, where most of the pools contained only 3 or less fragments, enabled identification of variants too infrequent to be detected by large pool PCR. Mutant fragments in positive control MSI-H tumor samples ranged from 0.26 to 0.68 in at least 4 of the 6 loci tested and were consistent with their MSI-H status. In the so called MSS tumors and constitutive tissues (normal colon tissue, and PBLs) of all the HNPCC patients, low, but significant levels of MSI were seen in at least two of the loci studied. This phenomenon was not seen in the sporadic MSI constitutive tissues nor the normal controls and suggests haploinsufficiency, gain-of-function, or a dominant/negative basis of the instability in HNPCC patients carrying germline mutations for tumor suppressor genes. A different frequency and spectrum of mutant fragments suggests a different genetic basis (other than a major mutation in MLH1 or MSH2) for disease in MSI-L and MSS HNPCC patients. ^