1 resultado para Nobody
em DigitalCommons@The Texas Medical Center
Resumo:
Many tumors arise from sites of inflammation providing evidence that innate immunity is a critical component in the development and progression of cancer. Neutrophils are primary mediators of the innate immune response. Upon activation, an important function of neutrophils is release of an assortment of proteins from their granules including the serine protease neutrophil elastase (NE). The effect of NE on cancer has been attributed primarily to its ability to degrade the extracellular matrix thereby promoting invasion and metastasis. Recently, it was shown that NE could be taken up by lung cancer cells leading to degradation of insulin receptor substrate-1 thereby promoting hyperactivity of the phosphatidylinositol-3 kinase (PI3K) pathway and tumor cell proliferation. To our knowledge, nobody has investigated uptake of NE by other tumor types. In addition, NE has broad substrate specificity suggesting that uptake of NE by tumor cells could impact processes regulating tumorigenensis other than activation of the PI3K pathway. Neutrophil elastase has been identified in breast cancer specimens where high levels of NE have prognostic significance. These studies have assessed NE levels in whole tumor lysates. Because the major source of NE is from activated neutrophils, we hypothesized that breast cancer cells do not have endogenous NE but may take up NE released by tumor associated neutrophils in the tumor microenvironment and that this could provide a link between the innate immune response to tumors and specific adaptive immune responses. In this thesis, we show that breast cancer cells lack endogenous NE expression and that they are able to take up NE resulting in increased generation of low molecular weight cyclin E (CCNE) and enhanced susceptibility to lysis by CCNE-specific cytotoxic T lymphocytes. We also show that after taking up NE and proteinase 3 (PR3), a second primary granule protease with significant homology to NE, breast cancer cells cross-present the NE- and PR3-derived peptide PR1 rendering them susceptible to PR1-targeted therapies. Taken together, our data support a role for NE uptake in modulating adaptive immune responses against breast cancer.