2 resultados para New air

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cohort of 418 United States Air Force (USAF) personnel from over 15 different bases deployed to Morocco in 1994. This was the first study of its kind and was designed with two primary goals: to determine if the USAF was medically prepared to deploy with its changing mission in the new world order, and to evaluate factors that might improve or degrade USAF medical readiness. The mean length of deployment was 21 days. The cohort was 95% male, 86% enlisted, 65% married, and 78% white.^ This study shows major deficiencies indicating the USAF medical readiness posture has not fully responded to meet its new mission requirements. Lack of required logistical items (e.g., mosquito nets, rainboots, DEET insecticide cream, etc.) revealed a low state of preparedness. The most notable deficiency was that 82.5% (95% CI = 78.4, 85.9) did not have permethrin pretreated mosquito nets and 81.0% (95% CI = 76.8, 84.6) lacked mosquito net poles. Additionally, 18% were deficient on vaccinations and 36% had not received a tuberculin skin test. Excluding injections, the overall compliance for preventive medicine requirements had a mean frequency of only 50.6% (95% CI = 45.36, 55.90).^ Several factors had a positive impact on compliance with logistical requirements. The most prominent was "receiving a medical intelligence briefing" from the USAF Public Health. After adjustment for mobility and age, individuals who underwent a briefing were 17.2 (95% CI = 4.37, 67.99) times more likely to have received an immunoglobulin shot and 4.2 (95% CI = 1.84, 9.45) times more likely to start their antimalarial prophylaxsis at the proper time. "Personnel on mobility" had the second strongest positive effect on medical readiness. When mobility and briefing were included in models, "personnel on mobility" were 2.6 (95% CI = 1.19, 5.53) times as likely to have DEET insecticide and 2.2 (95% CI = 1.16, 4.16) times as likely to have had a TB skin test.^ Five recommendations to improve the medical readiness of the USAF were outlined: upgrade base level logistical support, improve medical intelligence messages, include medical requirements on travel orders, place more personnel on mobility or only deploy personnel on mobility, and conduct research dedicated to capitalize on the powerful effect from predeployment briefings.^ Since this is the first study of its kind, more studies should be performed in different geographic theaters to assess medical readiness and establish acceptable compliance levels for the USAF. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With continuous new improvements in brachytherapy source designs and techniques, method of 3D dosimetry for treatment dose verifications would better ensure accurate patient radiotherapy treatment. This study was aimed to first evaluate the 3D dose distributions of the low-dose rate (LDR) Amersham 6711 OncoseedTM using PRESAGE® dosimeters to establish PRESAGE® as a suitable brachytherapy dosimeter. The new AgX100 125I seed model (Theragenics Corporation) was then characterized using PRESAGE® following the TG-43 protocol. PRESAGE® dosimeters are solid, polyurethane-based, 3D dosimeters doped with radiochromic leuco dyes that produce a linear optical density response to radiation dose. For this project, the radiochromic response in PRESAGE® was captured using optical-CT scanning (632 nm) and the final 3D dose matrix was reconstructed using the MATLAB software. An Amersham 6711 seed with an air-kerma strength of approximately 9 U was used to irradiate two dosimeters to 2 Gy and 11 Gy at 1 cm to evaluate dose rates in the r=1 cm to r=5 cm region. The dosimetry parameters were compared to the values published in the updated AAPM Report No. 51 (TG-43U1). An AgX100 seed with an air-kerma strength of about 6 U was used to irradiate two dosimeters to 3.6 Gy and 12.5 Gy at 1 cm. The dosimetry parameters for the AgX100 were compared to the values measured from previous Monte-Carlo and experimental studies. In general, the measured dose rate constant, anisotropy function, and radial dose function for the Amersham 6711 showed agreements better than 5% compared to consensus values in the r=1 to r=3 cm region. The dose rates and radial dose functions measured for the AgX100 agreed with the MCNPX and TLD-measured values within 3% in the r=1 to r=3 cm region. The measured anisotropy function in PRESAGE® showed relative differences of up to 9% with the MCNPX calculated values. It was determined that post-irradiation optical density change over several days was non-linear in different dose regions, and therefore the dose values in the r=4 to r=5 cm regions had higher uncertainty due to this effect. This study demonstrated that within the radial distance of 3 cm, brachytherapy dosimetry in PRESAGE® can be accurate within 5% as long as irradiation times are within 48 hours.