2 resultados para Neural Signal

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central dogma of molecular biology dictates that DNA is transcribed into RNA, which is later translated into protein. One of the early activators in this process is the transcription factor NF-κB. We have determined that an NF-κB inducer, CARMA3, is required for proper neural tube closure, similar to other NF-κB inducers. Using a genetic knockout of CARMA3, we demonstrated that it is required for Gαq-coupled GPCR-induced NF-κB activation. This is facilitated through a MAPK and IKK phosphorylation-independent mechanism, most likely by controlling NEMO-associated ubiquitination. We have also shown that CARMA3 is required for EGF and HRG-induced NF-κB activation. This activation requires the activity of both EGFR and HER2, as well as PKC. Again, we observed no defect in IKK phosphorylation, although we determined a clear defect in IKK activation. Finally, we have begun to determine the role of CARMA3 to both EGFR and HER2-induced tumorigenicity. By overexpressing a constitutive active mutant of HER2 in our CARMA3 WT and KO MEF cells, we have shown CARMA3 is important for HER2-driven soft agar colony growth. We have also shown that knockdown of endogenous CARMA3 in the EGFR-overexpressing A431 cell line abolishes EGF-induced NF-κB activation. These same cells have a dramatically reduced capacity to form colonies in soft agar as well. Using both mouse xenografts and a transgenic model of HER2-induced breast cancer, we have initiated studies which will help to determine the role of CARMA3 to in vivo tumorigenesis. Collectively, this work reveals novel roles for the CARMA3 protein in development, GPCR and EGFR/HER2 signaling. It also suggests that CARMA3 is involved in EGFR/HER2 mediated tumorigenesis, possibly indicating a novel therapeutic target for use in treatment of cancer. ^