2 resultados para Nest-site Selection
em DigitalCommons@The Texas Medical Center
Resumo:
Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.
Resumo:
Natural selection is one of the major factors in the evolution of all organisms. Detecting the signature of natural selection has been a central theme in evolutionary genetics. With the availability of microsatellite data, it is of interest to study how natural selection can be detected with microsatellites. ^ The overall aim of this research is to detect signatures of natural selection with data on genetic variation at microsatellite loci. The null hypothesis to be tested is the neutral mutation theory of molecular evolution, which states that different alleles at a locus have equivalent effects on fitness. Currently used tests of this hypothesis based on data on genetic polymorphism in natural populations presume that mutations at the loci follow the infinite allele/site models (IAM, ISM), in the sense that at each site at most only one mutation event is recorded, and each mutation leads to an allele not seen before in the population. Microsatellite loci, which are abundant in the genome, do not obey these mutation models, since the new alleles at such loci can be created either by contraction or expansion of tandem repeat sizes of core motifs. Since the current genome map is mainly composed of microsatellite loci and this class of loci is still most commonly studied in the context of human genome diversity, this research explores how the current test procedures for testing the neutral mutation hypothesis should be modified to take into account a generalized model of forward-backward stepwise mutations. In addition, recent literature also suggested that past demographic history of populations, presence of population substructure, and varying rates of mutations across loci all have confounding effects for detecting signatures of natural selection. ^ The effects of the stepwise mutation model and other confounding factors on detecting signature of natural selection are the main results of the research. ^