12 resultados para NON-HOMOLOGOUS END JOINING
em DigitalCommons@The Texas Medical Center
Resumo:
The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.
Resumo:
Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.
Resumo:
Genetic instability in mammalian cells can occur by many different mechanisms. In the absence of exogenous sources of DNA damage, the DNA structure itself has been implicated in genetic instability. When the canonical B-DNA helix is naturally altered to form a non-canonical DNA structure such as a Z-DNA or H-DNA, this can lead to genetic instability in the form of DNA double-strand breaks (DSBs) (1, 2). Our laboratory found that the stability of these non-B DNA structures was different in mammals versus Escherichia coli (E.coli) bacteria (1, 2). One explanation for the difference between these species may be a result of how DSBs are repaired within each species. Non-homologous end-joining (NHEJ) is primed to repair DSBs in mammalian cells, while bacteria that lack NHEJ (such as E.coli), utilize homologous recombination (HR) to repair DSBs. To investigate the role of the error-prone NHEJ repair pathway in DNA structure-induced genetic instability, E.coli cells were modified to express genes to allow for a functional NHEJ system under different HR backgrounds. The Mycobacterium tuberculosis NHEJ sufficient system is composed of Ku and Ligase D (LigD) (3). These inducible NHEJ components were expressed individually and together in E.coli cells, with or without functional HR (RecA/RecB), and the Z-DNA and H-DNA-induced mutations were characterized. The Z-DNA structure gave rise to higher mutation frequencies compared to the controls, regardless of the DSB repair pathway(s) available; however, the type of mutants produced after repair was greatly dictated on the available DSB repair system, indicated by the shift from 2% large-scale deletions in the total mutant population to 24% large-scale deletions when NHEJ was present (4). This suggests that NHEJ has a role in the large deletions induced by Z-DNA-forming sequences. H-DNA structure, however, did not exhibit an increase in mutagenesis in the newly engineered E.coli environment, suggesting the involvement of other factors in regulating H-DNA formation/stability in bacterial cells. Accurate repair by established DNA DSB repair pathways is essential to maintain the stability of eukaryotic and prokaryotic genomes and our results suggest that an error-prone NHEJ pathway was involved in non-B DNA structure-induced mutagenesis in both prokaryotes and eukaryotes.
The mechanism of action of a novel benzo[c]phenanthridine alkaloid, NK314 and the cellular responses
Resumo:
NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^
Resumo:
Lymphocyte development requires the assembly of diversified antigen receptor complexes generated by the genetically programmed V(D)J recombination event. Because germline DNA is cut, introducing potentially dangerous double-stranded breaks (DSBs) and rearranged prior to repair, its activity is limited to the non-cycling stages of the cell cycle, G0/G1. The potential involvement of a key mediator, Ataxia Telangiectasia Mutated or ATM, in the DNA damage response (DDR) and cell cycle checkpoints has been implicated in recombination, but its role is not fully understood. Thymic lymphomas from ATM deficient mice contain clonal chromosomal translocations involving the T-cell antigen receptor (TCR). A previous report found ATM and its downstream target p53 associated with V(D)J intermediates, suggesting the DDR senses recombination. In this study, we sought to understand the role of ATM in V(D)J recombination. Developing thymocytes from ATM deficient mice were analyzed according to the cell cycle to detect V(D)J intermediates. Examination of all TCR loci in the non-cycling (G0/G1) and cycling (S/G2/M) fractions revealed the persistence of intermediates in ATM deficient thymocytes, contrary to the wild-type in which intermediates are found only during G0/G1. Further analysis found no defect in end-joining of intermediates, nor were they detected in developed T-cells. Based upon the presence of persisting intermediates, the recombination initiating nuclease Rag-2 was examined; strict regulation limits it to G 0/G1. Rag-2 regulation was not affected by an ATM deficiency as Rag-2 expression remained contained within G0/G 1, indicating recombination is not continuous. To determine if an ATM deficiency affects recognition of V(D)J breaks, sites of recombination identified by a TCR locus or Rag expression were analyzed according to co-localization with a DDR factor phosphorylated immediately after DNA damage, phosphorylated H2AX (γH2AX). No differences in co-localization were found between the wild-type and ATM deficiency, demonstrating ATM deficient lymphocytes retain the ability to recognize DSBs. Together, these results suggest ATM is necessary in the cell cycle regulation of recombination but not essential for the identification of V(D)J breaks. ATM ensures the containment of intermediates within G0/G1 and maintains genomic stability of developing lymphocytes, emphasizing its fundamental role in preventing tumorigenesis.^
Resumo:
Extensive experience with the analysis of human prophase chromosomes and studies into the complexity of prophase GTG-banding patterns have suggested that at least some prophase chromosomal segments can be accurately identified and characterized independently of the morphology of the chromosome as a whole. In this dissertation the feasibility of identifying and analyzing specified prophase chromosome segments was thus investigated as an alternative approach to prophase chromosome analysis based on whole chromosome recognition. Through the use of prophase idiograms at the 850-band-stage (FRANCKE, 1981) and a comparison system based on the calculation of cross-correlation coefficients between idiogram profiles, we have demonstrated that it is possible to divide the 24 human prophase idiograms into a set of 94 unique band sequences. Each unique band sequence has a banding pattern that is recognizable and distinct from any other non-homologous chromosome portion.^ Using chromosomes 11p and 16 thru 22 to demonstrate unique band sequence integrity at the chromosome level, we found that prophase chromosome banding pattern variation can be compensated for and that a set of unique band sequences very similar to those at the idiogram level can be identified on actual chromosomes.^ The use of a unique band sequence approach in prophase chromosome analysis is expected to increase efficiency and sensitivity through more effective use of available banding information. The use of a unique band sequence approach to prophase chromosome analysis is discussed both at the routine level by cytogeneticists and at an image processing level with a semi-automated approach to prophase chromosome analysis. ^
Resumo:
Background. Cardiac risk assessment in cancer patients has not extensively been studied. We evaluated the role of stress myocardial perfusion imaging (MPI) in predicting cardiovascular outcomes in cancer patients undergoing non-cardiac surgery. ^ Methods. A retrospective chart review was performed on 507 patients who had a MPI from 01/2002 - 03/2003 and underwent non-cardiac surgery. Median follow-up duration was 1.5 years. Cox proportional hazard model was used to determine the time-to-first event. End points included total cardiac events (cardiac death, myocardial infarction (MI) and coronary revascularization), cardiac death, and all cause mortality. ^ Results. Of all 507 MPI studies 146 (29%) were abnormal. There were significant differences in risk factors between normal and abnormal MPI groups. Mean age was 66±11 years, with 60% males and a median follow-up duration of 1.8 years (25th quartile=0.8 years, 75th quartile=2.2 years). The majority of patients had an adenosine stress study (53%), with fewer exercise (28%) and dobutamine stress (16%) studies. In the total group there were 39 total cardiac events, 31 cardiac deaths, and 223 all cause mortality events during the study. Univariate predictors of total cardiac events included CAD (p=0.005), previous MI (p=0.005), use of beta blockers (p=0.002), and not receiving chemotherapy (p=0.012). Similarly, the univariate predictors of cardiac death included previous MI (p=0.019) and use of beta blockers (p=0.003). In the multivariate model for total cardiac events, age at surgery (HR 1.04, p=0.030), use of beta blockers (HR 2.46; p=0.011), dobutamine MPI (HR 3.08; p=0.018) and low EF (HR 0.97; p=0.02) were significant predictors of worse outcomes. In the multivariate model for predictors of cardiac death, beta blocker use (HR=2.74; p=0.017) and low EF (HR=0.95; p<0.003) were predictors of cardiac death. The only univariate MPI predictor of total cardiac events was scar severity (p=0.005). While MPI predictors of cardiac death were scar severity (p= 0.001) and ischemia severity (p=0.02). ^ Conclusions. Stress MPI is a useful tool in predicting long term outcomes in cancer patients undergoing surgery. Ejection fraction and severity of myocardial scar are important factors determining long term outcomes in this group.^
Resumo:
The 1999-2004 prevalence of chronic kidney disease in adults 20 year or older (15.5 million) is an estimated 7.69%. The risk of developing CKD is exacerbated by diabetes, hypertension and/or a family history of kidney disease. African Americans, Hispanics, Pacific Islanders, Native Americans, and the elderly are more susceptible to higher incidence of CKD. The challenges of aging coupled with co-morbidities such as kidney disease raises the potential for malnutrition among elderly (for the purpose of this study 55 years or older) populations. Lack of adherence to prescribed nutrition guidelines specific to renal failure jeopardizes body homeostasis and increases the likelihood of future morbidity and resultant mortality. The relationship and synergy that exists between diet and disease is evident. Clinical experience with renal patients has indicated the importance of adherence to diet therapy specific to kidney disease. Extension investigation of diet adherence among endstage renal disease patients revealed a sizeable dearth in the current literature. This thesis study was undertaken to help reduce that void. The study design is qualitative and descriptive. Support, cooperation, and collaboration were provided by the University of Texas Nephrology Department, University of Texas Physicians, and DaVita Dialysis Centers. Approximately 105 male and female chronic to end-stage kidney disease patients were approached to participate in elicitation interviews in dialysis treatment facilities regarding their present diet beliefs and practices. Eighty-five were recruited and agreed to participate. Inclusion criteria required individuals to be between 35-90 years of age; capable of completing a 5-10 minute interview; and English speaking. Each kidney patient was asked seven (7) non-leading questions developed from the constructs of the Theory of Planned Behavior. The study presents a descriptive comparison of behavioral, normative, and control beliefs that influence adherence to renal diets by age, race, and gender. The study successfully concluded that behavioral, normative, and control beliefs of chronic to end-stage renal patients promoted execution and adherence to prescribed nutrition. This study provides valuable information for dietitians, technicians, nurses, and physicians to assess patient compliance toward prescribed nutrition and the means to support or improve that performance. ^
Resumo:
Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p
Resumo:
This thesis project is motivated by the potential problem of using observational data to draw inferences about a causal relationship in observational epidemiology research when controlled randomization is not applicable. Instrumental variable (IV) method is one of the statistical tools to overcome this problem. Mendelian randomization study uses genetic variants as IVs in genetic association study. In this thesis, the IV method, as well as standard logistic and linear regression models, is used to investigate the causal association between risk of pancreatic cancer and the circulating levels of soluble receptor for advanced glycation end-products (sRAGE). Higher levels of serum sRAGE were found to be associated with a lower risk of pancreatic cancer in a previous observational study (255 cases and 485 controls). However, such a novel association may be biased by unknown confounding factors. In a case-control study, we aimed to use the IV approach to confirm or refute this observation in a subset of study subjects for whom the genotyping data were available (178 cases and 177 controls). Two-stage IV method using generalized method of moments-structural mean models (GMM-SMM) was conducted and the relative risk (RR) was calculated. In the first stage analysis, we found that the single nucleotide polymorphism (SNP) rs2070600 of the receptor for advanced glycation end-products (AGER) gene meets all three general assumptions for a genetic IV in examining the causal association between sRAGE and risk of pancreatic cancer. The variant allele of SNP rs2070600 of the AGER gene was associated with lower levels of sRAGE, and it was neither associated with risk of pancreatic cancer, nor with the confounding factors. It was a potential strong IV (F statistic = 29.2). However, in the second stage analysis, the GMM-SMM model failed to converge due to non- concaveness probably because of the small sample size. Therefore, the IV analysis could not support the causality of the association between serum sRAGE levels and risk of pancreatic cancer. Nevertheless, these analyses suggest that rs2070600 was a potentially good genetic IV for testing the causality between the risk of pancreatic cancer and sRAGE levels. A larger sample size is required to conduct a credible IV analysis.^
Resumo:
Over the last 2 decades, survival rates in critically ill cancer patients have improved. Despite the increase in survival, the intensive care unit (ICU) continues to be a location where end-of-life care takes place. More than 20% of deaths in the United States occur after admission to an ICU, and as baby boomers reach the seventh and eighth decades of their lives, the volume of patients in the ICU is predicted to rise. The aim of this study was to evaluate intensive care unit utilization among patients with cancer who were at the end of life. End of life was defined using decedent and high-risk cohort study designs. The decedent study evaluated characteristics and ICU utilization during the terminal hospital stay among patients who died at The University of Texas MD Anderson Cancer Center during 2003-2007. The high-risk cohort study evaluated characteristics and ICU utilization during the index hospital stay among patients admitted to MD Anderson during 2003-2007 with a high risk of in-hospital mortality. Factors associated with higher ICU utilization in the decedent study included non-local residence, hematologic and non-metastatic solid tumor malignancies, malignancy diagnosed within 2 months, and elective admission to surgical or pediatric services. Having a palliative care consultation on admission was associated with dying in the hospital without ICU services. In the cohort of patients with high risk of in-hospital mortality, patients who went to the ICU were more likely to be younger, male, with newly diagnosed non-metastatic solid tumor or hematologic malignancy, and admitted from the emergency center to one of the surgical services. A palliative care consultation on admission was associated with a decreased likelihood of having an ICU stay. There were no differences in ethnicity, marital status, comorbidities, or insurance status between patients who did and did not utilize ICU services. Inpatient mortality probability models developed for the general population are inadequate in predicting in-hospital mortality for patients with cancer. The following characteristics that differed between the decedent study and high-risk cohort study can be considered in future research to predict risk of in-hospital mortality for patients with cancer: ethnicity, type and stage of malignancy, time since diagnosis, and having advance directives. Identifying those at risk can precipitate discussions in advance to ensure care remains appropriate and in accordance with the wishes of the patient and family.^
Resumo:
The tumor suppressor p53 is mutated in over 50% of human sporadic tumors originating from diverse tissues. p53 responds to DNA damage and cell stress by activating the transcription of a variety of target genes, the protein products of which then initiate either growth arrest or apoptosis. ^ A p53 target with a particularly intriguing function is the oncogene MDM2. MDM2 functions, in part, by binding to and inhibiting p53's activity. Overexpression of MDM2, by gene amplification, has been found in 30% of human sarcomas harboring a wild type p53, indicating that an increase in MDM2 levels is sufficient for p53 inactivation. Mice carrying a homozygous null allele for mdm2 exhibit an early embryonic lethality that is completely rescued in a p53-null background. These data indicate that MDM2's only critical function in early mouse embryogenesis is the negative regulation of p53. ^ The mdmx gene is the first additional member of the mdm2 gene family to be isolated. MDMX, like MDM2, contains a RING-finger domain, ATP binding domain and a p53 binding domain, which retains the ability to bind and inhibit p53 transactivation in vitro. However, mdmx does not appear to be transcriptionally regulated by p53. We have cloned and characterized the murine mdmx genomic locus from a mouse 129 genomic library. The mdmx gene contains 11 exons, spans approximately 37 Kb of DNA, and is located on mouse chromosome 1. The genomic organization of the mdmx gene is identical to that of mdm2 except at the 5′ end of the gene near the p53 responsive element. Northern expression analysis of mdmx transcripts during mouse embryogenesis and in adult tissues revealed constitutive and ubiquitous expression throughout adult tissues and embryonic development. To determine the in vivo function of MDMX, mice carrying a null allele of mdmx have been generated. Mdmx homozygous null mice are early embryonic lethal. Mdmx null mice do not develop beyond 9.5 dpc and can be discerned by gross dissection as early as 7.5 dpc. Utilizing TUNEL and BrdU assays on 7.5 dpc histological sections we have determined that the mutant embryos are dying due to increased levels of growth arrest, but not apoptosis. Surprisingly, Mdmx homozygous null mice are viable in a p53 null background, indicating that MDMX is also very important in the negative regulation of p53. ^