3 resultados para NICKEL PHOSPHIDES
em DigitalCommons@The Texas Medical Center
Resumo:
We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^
Resumo:
The carcinogenic activity of water-insoluble crystalline nickel sulfide requires phagocytosis and lysosome-mediated intracellular dissolution of the particles to yield Ni('2+). This study investigated the extent and nature of the DNA damage in Chinese hamster ovary cells treated with various nickel compounds using the technique of alkaline elution. Crystalline NiS and water-soluble NiCl(,2) induced single strand breaks that were repaired quickly and DNA-protein crosslinks that persisted up to 24 hr after exposure to nickel. The induction of single strand breaks was concentration dependent at both noncytotoxic and lethal amounts of nickel. The induction of DNA-protein crosslinks was concentration dependent but was absent at lethal amounts of nickel. The cytoplasmic and nuclear uptake of nickel was concentration dependent even at the toxic level of nickel. However, the induction of DNA-protein crosslinks by nickel required active cell cycling and occurred predominantly in mid-late S phase of the cell cycle, suggesting that the lethal amounts of nickel inhibited DNA-protein crosslinking by inhibiting active cell cycling. Since the DNA-protein crosslinking induced by nickel was resistant to DNA repair, the nature of this lesion was investigated using various methods of DNA isolation and chromatin fractionation in combination with SDS-polyacrylamide gel electrophoresis. High molecular weight, non-histone chromosomal proteins and possibly histone 1 were preferentially crosslinked to DNA by nickel. The crosslinked proteins were concentrated in a magnesium-insoluble fraction of sonicated chromatin (5% of the total) that was similar to heterochromatin in solubility and protein composition. Alterations in DNA structure and function, brought about by the effect of nickel on protein-DNA interactions, may be related to the carcinogenicity of nickel compounds. ^
Resumo:
Certain inorganic nickel compounds such as crystalline NiS and Ni(,3)S(,2) are potent inducers of carcinogenesis and in vitro cell transformation, while several closely-related compounds such as amorphous NiS are essentially devoid of genotoxic activity. The phenomenon of selectivity of phagocytosis among such particulate nickel compounds has been hypothesized to account for their widely varying toxicological potency, yet the determinants of this selectivity have not been well characterized. Extracellular medium composition, particle dissolution, and particle surface charge were examined as potential determinants of selective phagocytosis for the carcinogenic crystalline and noncarcinogenic amorphous modifications of NiS. Selectivity and avidity of uptake of crystalline NiS by CHO cells was not dependent upon serum: phagocytosis of crystalline, but not amorphous NiS proceeded readily in a minimal salts/glucose medium at 37(DEGREES)C. The evolution of phagocytosis-inhibiting Ni(II) from the surface of amorphous NiS particles did not demonstrably contribute to the lower uptake of these noncarcinogenic particles despite their somewhat greater dissolution rate than the readily phagocytosed crystalline NiS particles. Significant differences in surface charge were noted between crystalline and amorphous NiS, the former being more negative in charge in distilled water suspension. Exposure of amorphous NiS particles to the vigorously reducing environment of a LiAlH(,4) solution under an inert atmosphere resulted in the particles' acquisition of a more negative surface charge. Amorphous NiS particles thus treated were phagocytosed by CHO cells to an extent similar to that of untreated crystalline NiS particles and likewise were shown to induce morphological transformation of primary Syrian hamster embryo cells with a similar potency. The potentiation of uptake characteristic of LiAlH(,4)-treated amorphous NiS was lost gradually upon storage of particles in ambient oxygenated atmosphere and was lost rapidly by apparent particle surface oxidation in aerated distilled water suspensions aged for up to 7 days. Concomitant with this loss of uptake there occurred a loss of negative surface charge. These results suggest the predominant role of particle surface charge rather than adsorbed serum components or particle dissolution as a determinant of selective phagocytosis among particulate nickel compounds. ^