37 resultados para NEURAL PROGENITOR CELLS
em DigitalCommons@The Texas Medical Center
Resumo:
Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of both myc oncogenes, regulators of neural progenitor proliferation, and REST/NRSF, a transcriptional repressor of neuronal differentiation genes. Previous studies have shown that neither c-Myc nor REST/NRSF alone could cause tumor formation. To determine whether c-Myc and REST/NRSF act together to cause medulloblastomas, we used a previously established cell line derived from external granule layer stem cells transduced with activated c-myc (NSC-M). These immortalized NSCs were able to differentiate into neurons in vitro. In contrast, when the cells were engineered to express a doxycycline-regulated REST/NRSF transgene (NSC-M-R), they no longer underwent terminal neuronal differentiation in vitro. When injected into intracranial locations in mice, the NSC-M cells did not form tumors either in the cerebellum or in the cerebral cortex. In contrast, the NSC-M-R cells did produce tumors in the cerebellum, the site of human medulloblastoma formation, but not when injected into the cerebral cortex. Furthermore, the NSC-M-R tumors were blocked from terminal neuronal differentiation. In addition, countering REST/NRSF function blocked the tumorigenic potential of NSC-M-R cells. To our knowledge, this is the first study in which abnormal expression of a sequence-specific DNA-binding transcriptional repressor has been shown to contribute directly to brain tumor formation. Our findings indicate that abnormal expression of REST/NRSF and Myc in NSCs causes cerebellum-specific tumors by blocking neuronal differentiation and thus maintaining the "stemness" of these cells. Furthermore, these results suggest that such a mechanism plays a role in the formation of human medulloblastoma.
Resumo:
Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.
Resumo:
Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.
Resumo:
We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.
Resumo:
Classical ablation studies have shown that neural crest cells (NCC) are critical for thymus organogenesis, though their role in this process has never been determined. We have used a mouse model deficient in NCC near the thymus rudiment to investigate the role of NCC in thymus organogenesis. Splotch mice exhibit a lack of NCC migration due to mutation in the gene encoding the transcription factor Pax 3. Homozygous mutants, designated Pax3Sp/Sp, display a range of phenotypes including spina bifida, cardiac outflow tract deformities, and craniofacial deformities. Pax3Sp/Sp, mice have also been reported to have hypoplastic and abnormal thymi, which is consistent with the expected result based on the classical ablation studies. However, in contrast to the dogma, we find that the thymus lobes in Pax3Sp/Sp, mice are even larger in size than those of littermate controls, although they fail to migrate and are therefore ectopic. Differentiation of the thymic epithelial compartments occurs normally, including the ability to import hematopoietic precursors, until the embryos die at embryonic day E13.0. We also investigated the patterning of the third pharyngeal pouch which gives rise to both the thymus and the parathyroid. Using RNA probes to detect expression of transcription factors exclusively expressed in the ventral, thymus- or dorsal, parathyroidfated domains of the E11.5 third pouch, we show that the parathyroid domain is restricted and the thymus-fated domain is expanded in Pax3Sp/Sp, embryos. Furthermore, mixing of the boundary between these domains occurs at E12.0. These results necessitate reconsideration of the previously accepted role for NCC in thymus organogenesis. NCC are not required for outgrowth of the thymus up to E13.0, and most strikingly, we have discovered a novel role for NCC in establishing parathyroid versus thymus fate boundaries in the third pharyngeal pouch. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
Most human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It’s crucial to understand the regulatory mechanisms unique to CSCs, so that we may design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue in understanding the regulatory mechanisms of cancer. However, how miRNAs may regulate CSCs is still poorly understood. Here, we present miRNA expression profiling in six populations of prostate cancer (PCa) stem/progenitor cells that possess distinct tumorigenic properties. Six miRNAs were identified to be commonly and differentially expressed, namely, four miRNAs (miR-34a, let-7b, miR-106a and miR-141) were under-expressed, and two miRNAs (miR-301 and miR-452) were over-expressed in the tumorigenic subsets compared to the corresponding marker-negative subpopulations. Among them, the expression patterns of miR-34, let-7b, miR-141 and miR-301 were further confirmed in the CD44+ human primary prostate cancer (HPCa) samples. We then showed that miR-34a functioned as a critical negative regulator in prostate CSCs and PCa development and metastasis. Over-expression of miR-34a in either bulk or CD44+ PCa cells significantly suppressed clonal expansion, tumor development and metastasis. Systemic delivery of miR-34a in tumor-bearing mice demonstrated a potent therapeutic effect again tumor progression and metastasis, leading to extended animal survival. Of great interest, we identified CD44 itself as a direct and relevant downstream target of miR-34a in mediating its tumor-inhibitory effects. Like miR-34a, let-7 manifests similar tumor suppressive effects in PCa cells. In addition, we observed differential mechanisms between let-7 and miR-34a on cell cycle, with miR-34a mainly inducing G1 cell-cycle arrest followed by cell senescence and let-7 inducing G2/M arrest. MiR-301, on the other hand, exerted a cell type dependent effect in regulating prostate CSC properties and PCa development. In summary, our work reveals that the prostate CSC populations display unique miRNA expression signatures and different miRNAs distinctively and coordinately regulate various aspects of CSC properties. Altogether, our results lay a scientific foundation for developing miRNA-based anti-cancer therapy.
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. The current theory is that these tumors are caused by self-renewing glioblastoma-derived stem cells (GSCs). At the current time, the mechanisms that regulate self-renewal and other oncogenic properties of GSCs remain unknown. Recently, we found transcriptional repressor REST maintains self-renewal in neural stem cells (NSCs) and in GSCs. REST also regulates other oncogenic properties, such as apoptosis, invasion and proliferation. However, the mechanisms by which REST regulates these oncogenic properties are unknown. In an attempt to determine these mechanisms, we performed loss and gain-of-function experiments and genome-wide mRNA expression analysis in GSCs, and we were able to identify REST-regulated genes in GSCs. This was accomplished, after screening concordantly regulated genes in NSCs and GSCs, utilizing two RE1 databases, and setting two-fold expression as filters on the resulting genes. These results received further validation by qRT-PCR. Ingenuity Pathway Analysis (IPA) analysis further revealed the top REST target genes in GSCs were downstream targets of REST and/or involved in other cancers in other cell lines. IPA also revealed that many of the differentially-regulated genes identified in this study are involved in oncogenic properties seen in GBM, and which we believe are related to REST expression.
Resumo:
Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes thymus organogenesis Kim T. Cardenas The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, which in turn is positively regulated by Shh. Although initially expressed throughout pharyngeal pouch endoderm, Tbx1 expression is excluded from the thymus-specific domain of the 3rd PP by E10.5, but persists in the parathyroid domain. Based on these observations, we hypothesized that Tbx1 expression is non-permissive for thymus fate specification and that enforced expression of Tbx1 in the fetal thymus would impair thymus development. To test this hypothesis, we generated knock-in mice containing a Cre-inducible allele that allows for tissue-specific Tbx1 expression. Expression of the R26iTbx1 allele in fetal and adult thymus using Foxn1Cre resulted in severe thymus hypoplasia throughout ontogeny that persisted in the adult. Thymic epithelial cell (TEC) development was impaired as determined by immunohistochemical and FACS analysis of various differentiation markers. The relative level of Foxn1 expression in fetal TECs was significantly reduced. TECs in R26iTbx1/+ thymi assumed an almost universal expression of Plet-1, a marker associated with a TEC stem/progenitor cell fate. In addition, embryonic R26iTbx1/+ mice develop a perithymic mesechymal capsule that appears expanded compared to control littermates. Interestingly, thymi from neonatal and adult R26iTbx1/+ but not R26+/+ mice were encased in adipose tissue. This thymic phenotype also correlated with a decrease in thymocyte cellularity and aberrant thymocyte differentiation. The results to date support the conclusion that enforced expression of Tbx1 in TECs antagonizes their differentiation and prevents normal organogenesis via both direct and indirect effects.
Resumo:
During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^
Resumo:
Neurogenesis in the adult mouse brain occurs within the subventricular zone (SVZ) of the lateral ventricle. In the SVZ, neural stem cells (NSC) reside in a specialized microenvironment, or vascular niche, consisting of blood vessels and their basement membranes. Most NSCs in the SVZ differentiate into progenitor cells, which further differentiate to generate neuroblasts, which then migrate from the SVZ to the olfactory bulbs (OB) along the rostral migratory stream (RMS). ECM-mediated adhesion and signaling within the vascular niche likely contribute to proper NSC self-renewal, survival, differentiation and neuroblast motility. The mechanisms that control these events are poorly understood. Previous studies from our group and others have shown that loss of the ECM receptor, αvβ8 integrin, in NSCs in the embryonic mouse brain leads to severe developmental vascular defects and premature death. Here, the functions of αvβ8 integrin in the adult brain have been examined using mice that have been genetically manipulated to lack a functional β8 integrin gene. This study reveals that loss of β8 integrin leads to widespread defects in homeostasis of the neurovascular unit, including increased intracerebral blood vessels with enhanced perivascular astrogliosis. Additionally, β8 integrin dependent defects in NSC proliferation, survival, and differentiation, as well as neuroblast migration in the RMS were observed both in vivo and in vitro. The defects correlated, in part, with diminished integrin-mediated activation of TGFβ, an ECM ligand of β8 integrin. Collectively, these data identify important adhesion and signaling functions for β8 integrin in the regulation of neural stem and progenitor cells in the SVZ as well as in neuroblast migration along the RMS in the adult brain.
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Resumo:
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Resumo:
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.
Resumo:
Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.