4 resultados para NETWORK FORMATION

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hippocampus receives input from upper levels of the association cortex and is implicated in many mnemonic processes, but the exact mechanisms by which it codes and stores information is an unresolved topic. This work examines the flow of information through the hippocampal formation while attempting to determine the computations that each of the hippocampal subfields performs in learning and memory. The formation, storage, and recall of hippocampal-dependent memories theoretically utilize an autoassociative attractor network that functions by implementing two competitive, yet complementary, processes. Pattern separation, hypothesized to occur in the dentate gyrus (DG), refers to the ability to decrease the similarity among incoming information by producing output patterns that overlap less than the inputs. In contrast, pattern completion, hypothesized to occur in the CA3 region, refers to the ability to reproduce a previously stored output pattern from a partial or degraded input pattern. Prior to addressing the functional role of the DG and CA3 subfields, the spatial firing properties of neurons in the dentate gyrus were examined. The principal cell of the dentate gyrus, the granule cell, has spatially selective place fields; however, the behavioral correlates of another excitatory cell, the mossy cell of the dentate polymorphic layer, are unknown. This report shows that putative mossy cells have spatially selective firing that consists of multiple fields similar to previously reported properties of granule cells. Other cells recorded from the DG had single place fields. Compared to cells with multiple fields, cells with single fields fired at a lower rate during sleep, were less likely to burst, and were more likely to be recorded simultaneously with a large population of neurons that were active during sleep and silent during behavior. These data suggest that single-field and multiple-field cells constitute at least two distinct cell classes in the DG. Based on these characteristics, we propose that putative mossy cells tend to fire in multiple, distinct locations in an environment, whereas putative granule cells tend to fire in single locations, similar to place fields of the CA1 and CA3 regions. Experimental evidence supporting the theories of pattern separation and pattern completion comes from both behavioral and electrophysiological tests. These studies specifically focused on the function of each subregion and made implicit assumptions about how environmental manipulations changed the representations encoded by the hippocampal inputs. However, the cell populations that provided these inputs were in most cases not directly examined. We conducted a series of studies to investigate the neural activity in the entorhinal cortex, dentate gyrus, and CA3 in the same experimental conditions, which allowed a direct comparison between the input and output representations. The results show that the dentate gyrus representation changes between the familiar and cue altered environments more than its input representations, whereas the CA3 representation changes less than its input representations. These findings are consistent with longstanding computational models proposing that (1) CA3 is an associative memory system performing pattern completion in order to recall previous memories from partial inputs, and (2) the dentate gyrus performs pattern separation to help store different memories in ways that reduce interference when the memories are subsequently recalled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficits in social cognition are prominent symptoms of many human psychiatric disorders, but the origin of such deficits remains largely unknown. To further current knowledge regarding the neural network mediating social cognition, the present research program investigated the individual contributions of two temporal lobe structures, the amygdala and hippocampal formation, and one frontal lobe region, the orbital frontal cortex (Areas 11 and 13), to primate social cognition. Based on previous research, we hypothesized that the amygdala, hippocampal formation and orbital frontal cortex contribute significantly to the formation of new social relationships, but less to the maintenance of familiar ones. ^ Thirty-six male rhesus macaques (Macaca mulatta) served as subjects, and were divided into four experimental groups: Neurotoxic amygdala lesion (A-ibo, n = 9), neurotoxic or aspiration orbital frontal cortex lesion (O, n = 9), neurotoxic hippocampal formation lesion (H-ibo, n = 9) or sham-operated control (C, n = 9). Six social groups (tetrads) were created, each containing one member from each experimental group. The effect of lesion on established social relationships was assessed during pre- and post-surgical unrestrained social interactions, whereas the effect of lesion on the formation of new relationships was assessed during an additional phase of post-surgical testing with shuffled tetrad membership. Results indicated that these three neural structures each contribute significantly to both the formation and maintenance of social relationships. Furthermore, the amygdala appears to primarily mediate normal responses to threatening social signals, whereas the orbital frontal cortex plays a more global role in social cognition by mediating responses to both threatening and affiliative social signals. By contrast, the hippocampal formation seems to contribute to social cognition indirectly by providing access to previous experience during social judgments. ^ These conclusions were further investigated with three experiments that measured behavioral and physiological (stress hormone) reactivity to threatening stimuli, and three additional experiments that measured subjects' ability to flexibly alter behavioral responses depending on the incentive value of a food reinforcer. Data from these six experiments further confirmed and strengthened the three conclusions originating from the social behavior experiments and, when combined with the current literature, helped to formulate a simple, but testable, theoretical model of primate social cognition. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adherens junctions (AJs) and basolateral modules are important for the establishment and maintenance of apico-basal polarity. Loss of AJs and basolateral module members lead to tumor formation, as well as poor prognosis for metastasis. Recently, in mammalian studies it has been shown that loss of either AJ or basolateral module members deregulate Yorkie activity, the downstream transcriptional effector of the Hippo pathway. Importantly, it is unclear if AJ and basolateral components act through the same or parallel mechanisms to regulate Yorkie activity. Here, we dissect how loss of AJ and basolateral components affects Hippo signaling in Drosophila. Surprisingly, while scrib knock-down tissue displays increased reporter activity autonomously, α-cat knock-down tissue shows a cell autonomous decrease and a cell non-autonomous increase of Hippo reporter activity. We provided several lines of evidence to show the differential regulation in polarity protein localizations and oncogenic cooperative overgrowth by AJs and basolateral complexes. Finally, we show that Hippo pathway activity is induced in α-cat and scrib double knocked-down tissue. Taken together, our results provide evidence to show that basolateral modules and AJs act in parallel to modulate Hippo pathway activity. Non-muscle myosin II is an actomyosin component that interacts with the actin. Non-muscle myosin II also interacts with lgl, though the function of this interaction is not clear. Our lab demonstrated that modulating F-actin regulates Hippo pathway activity, and lgl also has been described as a Hippo pathway regulator. Therefore we suspect that myosin II is also involved in Hippo pathway regulation. We first characterized non-muscle Myosin II as a novel tumor suppressor gene by affecting Hippo pathway activity. Upstream regulators of Myosin II, members in the Rho signaling pathway, also displayed similar phenotypes as the Myosin II knock-down tissues. Apoptosis is also induced in myosin II knock-down tissues, however, blocking cell death does not affect myosin II knock-down induced Hippo activation. Our data suggested hyperactivating myosin II induced F-actin accumulation so therefore induces Hippo target activation. Unexpectedly, we also observed that reducing F-actin activity induced Hippo target activation in vivo. These controversial data indicated that actomyosin may regulate the Hippo pathway through multiple mechanisms.