7 resultados para NEONATAL MOUSE OVARY

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the tumorigenic effects that result from neonatal exposure to both natural and synthetic estrogens resemble those found in humans exposed to diethylstilbestrol (DES) in utero. Using this established DES neonatal mouse model, my goal was to investigate long-term molecular and morphological effects of certain polychlorinated biphenyls (PCBs) that are weakly estrogenic in adult mice. Focusing on the cervicovaginal (CV) tract, since this is where tumors develop in the BALB/c mouse, I first assessed the 17β-estradiol (E2) dose-response for expression of lactoferrin (LTF). LTF is a highly inducible estrogen biomarker that is permanently altered in uteri from neonatally treated mice. Treatments were administered via 5 subcutaneous injections beginning within 16 hrs after birth, days 1–5. ^ The ontogeny of LTF expression from mouse CV tracts was determined by examining three different stages of life: pups, immature, and mature mice. Northern RNA analysis and immunohistochemistry showed that neonatal E 2 treatment both increases and decreases LTF expression. Early expression of LTF in the CV tract at all doses occurred in pups. In both immature and adult mice, increased LTF expression was dependent on whether E2 induced ovary-dependent or ovary-independent persistent vaginal cornification. ^ Next, I studied biological responses from neonatally PCB exposed adult mice. As expected, using a neonatal uterine bioassay I showed that 2 ′4′6′-trichloro-4-biphenylol (OH-PCB-30), 2′3′4′ 5-tetrachloro-4-biphenyloI (OH-PCB-61), and OH-PCB-30/61 (50/50 mixture), were estrogenic causing a dose-dependent increase in uterine weight. ^ Long-term effects of OH-PCB 30 [200 μg/pup/day] were most similar to E2 as seen by an increased uterine wet weight in day 50 mice similar to E2 [5 μg/pup/day] (141% and 140% of control, respectively). Another similarity between OH-PCB 30 and E2 neonatally treated mice was found in those sacrificed at 20 months of age. At these same doses CV tract squamous cell carcinoma induction was 43% of E2 treated mice and 47% of OH-PCB 30 treated mice. Differences were noted in adenoaquamous; cell carcinoma development, where 16% of OH-PCB-30 neonatally treated mice developed tumors versus 8% for E2. Based on these results using the neonatal mouse model, I conclude that the OH-PCBs tested are strongly estrogenic and tumorigenic showing dose-response relationships when exposure occurs during development of the reproductive tract in mice. These results may have important implications for risk assessment in determining the effects of xenoestrogens exposure early versus later in life. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the evolutionary relationship between human chromosome 16p12-p13 and mouse chromosomes was investigated by determining the order of marker loci in the region and then identifying the chromosomal locations of the homologous loci in mice. Eighteen genes from human 16 were mapped to fifteen subchromosomal regions by a variety of mapping approaches.^ Thirteen of the genes were mapped in the mouse. Linkage analysis with backcross mice and segregation analysis in a mouse - Chinese Hamster Ovary (CHO) somatic cell hybrid panel informative for different regions of mouse genome were used. The results assigned the thirteen genes to three different mouse chromosomes.^ A group of six genes on mouse 16 was found to be closely linked to Scid. The order of Myh11 and Mrp remains ambiguous since no recombination was detected in backcross analysis. Their relative position in human is also uncertain since they were shown to be very close to each other. For the other mouse loci, an unambiguous gene order could be determined and was found to be identical to that in human. Therefore, they comprise a new conserved linkage group between the two species. The orientation of the group was inverted relative to the centromeres, i.e. the proximal loci in one species become distal in another. The size of the group was estimated to be from 4.4 to 8 Mb and 10 to 32 cM in human. In mouse, it was about 21 cM in the backcross analysis. The two boundaries of the conserved linkage were defined within a 1 Mb range. It is now possible to predict the locations of mouse homologs for some human disease genes based on their locations on human 16p.^ The six human 16p genes that map to MMU7 showed a different gene order in mouse than in human. No recombination was found between Crym and Umod while Crym was distal to D16S79A and proximal to D16S92. The location of Stp and Cdr2 with respect to the above four loci was not determined since they were not mapped in the same set of backcross mice. These genes greatly expanded an existing conserved synteny group between the human 16p12-p13 region and the MMU7. It now consists of eleven loci that span a region of probably more than 10 Mb in human. The gene order derived from this study provided further evidence for chromosomal rearrangements within the conserved synteny. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogens have been implicated in the normal and neoplastic development of the mammary gland. Although estradiol is essential for early mammary differentiation, its role in postnatal ductal morphogenesis is poorly defined. We have found that neonatal estradiol exposure promotes precocious ductal outgrowth and terminal end bud formation in 21 day-old female mice. In contrast to this precocious phenotype, day 21 estradiol-treated epithelium, transplanted into control host fatpads, grows more slowly than control epithelium. Western and immunohistochemical (IHC) analyses indicate that neonatally-estrogenized glands have significantly less total ER than controls at days 7 and 21, and significantly more stromal ER at day 35. Estrogen receptor α (ER) is present in the gland when treatment is initiated at day 1. We propose that the premature activation of ER by neonatal estradiol exposure, during this critical perinatal period, is a key factor in the alteration of mammary growth and ER expression. ^ To address the role of ER function in mammary morphogenesis, we have developed an in vitro system to study the effect of estradiol exposure in vivo. Keratin and ER-positive mammary epithelial cell lines from 7, 21 and 35 day-old oil or estradiol treated mice have been established. Cell lines derived from estradiol-treated mice grow significantly slower than cells from control glands. Although the level of ER expressed by each cell line is correlated to its rate of growth, epithelial growth in vitro is estradiol-independent and antiestrogen-insensitive. Estradiol-induced transcription from an ERE-reporter in transiently-transfected cell lines confirms the functionality of the ER detected by western and IHC. However, there are no differences in estradiol-stimulated transcription between cell lines. ^ In conclusion, neonatal estradiol treatment alters the pattern of ER expression in mammary epithelial and stromal cells in vivo, and the growth of mammary epithelial cells in vivo and in vitro. When grown outside of the estrogenized host, exposed epithelium grows more slowly than the control. Therefore, an extra-epithelial factor is necessary for enhanced epithelial growth. Our model, which couples an in vivo-in vitro approach, can be used in the future to identify factors involved in the period of early mammary outgrowth and carcinogen susceptibility. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional enhancers are genomic DNA sequences that contain clustered transcription factor (TF) binding sites. When combinations of TFs bind to enhancer sequences they act together with basal transcriptional machinery to regulate the timing, location and quantity of gene transcription. Elucidating the genetic mechanisms responsible for differential gene expression, including the role of enhancers, during embryological and postnatal development is essential to an understanding of evolutionary processes and disease etiology. Numerous methods are in use to identify and characterize enhancers. Several high-throughput methods generate large datasets of enhancer sequences with putative roles in embryonic development. However, few enhancers have been deleted from the genome to determine their roles in the development of specific structures, such as the limb. Manipulation of enhancers at their endogenous loci, such as the deletion of such elements, leads to a better understanding of the regulatory interactions, rules and complexities that contribute to faithful and variant gene transcription – the molecular genetic substrate of evolution and disease. To understand the endogenous roles of two distinct enhancers known to be active in the mouse embryo limb bud we deleted them from the mouse genome. I hypothesized that deletion of these enhancers would lead to aberrant limb development. The enhancers were selected because of their association with p300, a protein associated with active transcription, and because the human enhancer sequences drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. To confirm that the orthologous mouse enhancers, mouse 280 and 1442 (M280 and M1442, respectively), regulate expression in the developing limb we generated stable transgenic lines, and examined lacZ expression. In M280-lacZ mice, expression was detected in E11.5 fore- and hindlimbs in a region that corresponds to digits II-IV. M1442-lacZ mice exhibited lacZ expression in posterior and anterior margins of the fore- and hindlimbs that overlapped with digits I and V and several wrist bones. We generated mice lacking the M280 and M1442 enhancers by gene targeting. Intercrosses between M280 -/+ and M1442 -/+, respectively, generated M280 and M1442 null mice, which are born at expected Mendelian ratios and manifest no gross limb malformations. Quantitative real-time PCR of mutant E11.5 limb buds indicated that significant changes in transcriptional output of enhancer-proximal genes accompanied the deletion of both M280 and M1442. In neonatal null mice we observed that all limb bones are present in their expected positions, an observation also confirmed by histology of E18.5 distal limbs. Fine-scale measurement of E18.5 digit bone lengths found no differences between mutant and control embryos. Furthermore, when the developmental progression of cartilaginous elements was analyzed in M280 and M1442 embryos from E13.5-E15.5, transient development defects were not detected. These results demonstrate that M280 and M1442 are not required for mouse limb development. Though M280 is not required for embryonic limb development it is required for the development and/or maintenance of body size – adult M280 mice are significantly smaller than control littermates. These studies highlight the importance of experiments that manipulate enhancers in situ to understand their contribution to development.