3 resultados para NEAR-IR RADIATION
em DigitalCommons@The Texas Medical Center
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
Standard treatment strategies for cancer patients include surgery, radiation therapy, and chemotherapy. Although these strategies have been proven effective, they also have associated limitations. An attractive and innovative approach that can be used alone or in combination with the above modalities is based on the systemic or topical administration of a nanomaterial-based photoactive compound. Interaction with light in the near infrared (NIR) region results in either emission of fluorescence, which can be used for photodetection, or absorption of light which results in phototherapy. Nanomaterials have the advantage of providing multi-functional and unique properties in a single device that cannot be readily acquired with conventional small molecular weight compounds. ^ In this study, three different novel nanocarrier systems were designed and evaluated in mediating photodetection and phototherapy in the NIR. The first compound synthesized was a dual-labeled magnetic resonance/optical imaging agent for sentinel lymph node mapping and biopsy. This dual-labeled agent combines the high resolution of magnetic resonance imaging with the highly sensitive detection of optical imaging. The second imaging agent was an activatable optical imaging agent used to monitor cathepsin B activity in vivo and to probe the degradation of poly(L-glutamic acid). This polymeric nanocarrier offers highly sensitive technique for the detection of enzymatic activity, with is not yet possible with small molecular weight compounds. The third agent was a C225-conjugated hollow nanoshell that is targeted to epidermal growth factor receptors. This targeting agent has been demonstrated to mediate photothermal therapy both in vitro and in vivo. ^ These nanocarrier systems are an invaluable tool for the detection of cancer and many other diseases. With improved targeted delivery of these agents, the ability to diagnose diseases will become more sensitive and more specific. Finally, when designed properly, these agents would allow concurrent diagnosis and treatment of patients of various diseases. ^
Resumo:
A nested case-control study design was used to investigate the relationship between radiation exposure and brain cancer risk in the United States Air Force (USAF). The cohort consisted of approximately 880,000 men with at least 1 year of service between 1970 and 1989. Two hundred and thirty cases were identified from hospital discharge records with a diagnosis of primary malignant brain tumor (International Classification of Diseases, 9th revision, code 191). Four controls were exactly matched with each case on year of age and race using incidence density sampling. Potential career summary extremely low frequency (ELF) and microwave-radiofrequency (MWRF) radiation exposures were based upon the duration in each occupation and an intensity score assigned by an expert panel. Ionizing radiation (IR) exposures were obtained from personal dosimetry records.^ Relative to the unexposed, the overall age-race adjusted odds ratio (OR) for ELF exposure was 1.39, 95 percent confidence interval (CI) 1.03-1.88. A dose-response was not evident. The same was true for MWRF, although the OR = 1.59, with 95 percent CI 1.18-2.16. Excess risk was not found for IR exposure (OR = 0.66, 45 percent CI 0.26-1.72).^ Increasing socioeconomic status (SES), as identified by military pay grade, was associated with elevated brain tumor risk (officer vs. enlisted personnel age-race adjusted OR = 2.11, 95 percent CI 1.98-3.01, and senior officers vs. all others age-race adjusted OR = 3.30, 95 percent CI 2.0-5.46). SES proved to be an important confounder of the brain tumor risk associated with ELF and MWRF exposure. For ELF, the age-race-SES adjusted OR = 1.28, 95 percent CI 0.94-1.74, and for MWRF, the age-race-SES adjusted OR = 1.39, 95 percent CI 1.01-1.90.^ These results indicate that employment in Air Force occupations with potential electromagnetic field exposures is weakly, though not significantly, associated with increased risk for brain tumors. SES appeared to be the most consistent brain tumor risk factor in the USAF cohort. Other investigators have suggested that an association between brain tumor risk and SES may arise from differential access to medical care. However, in the USAF cohort health care is universally available. This study suggests that some factor other than access to medical care must underlie the association between SES and brain tumor risk. ^