3 resultados para NEAR-INFRARED LUMINESCENCE

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Standard treatment strategies for cancer patients include surgery, radiation therapy, and chemotherapy. Although these strategies have been proven effective, they also have associated limitations. An attractive and innovative approach that can be used alone or in combination with the above modalities is based on the systemic or topical administration of a nanomaterial-based photoactive compound. Interaction with light in the near infrared (NIR) region results in either emission of fluorescence, which can be used for photodetection, or absorption of light which results in phototherapy. Nanomaterials have the advantage of providing multi-functional and unique properties in a single device that cannot be readily acquired with conventional small molecular weight compounds. ^ In this study, three different novel nanocarrier systems were designed and evaluated in mediating photodetection and phototherapy in the NIR. The first compound synthesized was a dual-labeled magnetic resonance/optical imaging agent for sentinel lymph node mapping and biopsy. This dual-labeled agent combines the high resolution of magnetic resonance imaging with the highly sensitive detection of optical imaging. The second imaging agent was an activatable optical imaging agent used to monitor cathepsin B activity in vivo and to probe the degradation of poly(L-glutamic acid). This polymeric nanocarrier offers highly sensitive technique for the detection of enzymatic activity, with is not yet possible with small molecular weight compounds. The third agent was a C225-conjugated hollow nanoshell that is targeted to epidermal growth factor receptors. This targeting agent has been demonstrated to mediate photothermal therapy both in vitro and in vivo. ^ These nanocarrier systems are an invaluable tool for the detection of cancer and many other diseases. With improved targeted delivery of these agents, the ability to diagnose diseases will become more sensitive and more specific. Finally, when designed properly, these agents would allow concurrent diagnosis and treatment of patients of various diseases. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are found over-expressed in a variety of tumors cells including glioma cells as well as angiogenic blood vessels. Noninvasive imaging of EphB4 could potentially increase early detection rates, monitor response to therapy directed against EphB4, and improve patient outcomes. Targeted delivery of EphB4 receptor specific peptide conjugated hollow gold nanoshells (HAuNS) into tumors has great potential in cancer imaging and photothermal therapy. In this study, we developed an EphB4 specific peptide named TNYL-RAW and labeled with radioisotope 64Cu and Cy5.5 dye. We also conjugate this specific peptide with hollow gold nanoshells (HAuNS) to evaluate targeted photothermal therapy of cancers. In vitro, 64Cu-DOTA-TNYL- RAW specifically bind to CT26 and PC-3M cells but not to A549 cells. In vivo, Small-animal PET/CT clearly showed the significant uptake of 64Cu-DOTA-TNYL-RAW in CT26 and PC-3M tumors but not in A549 tumors. Furthermore, µPET/CT and near-infrared optical imaging clearly showed the uptake of the dual labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of nude mice. In U251 tumors, Cy5.5-labeled peptide can bind to EphB4-expressing tumor blood vessels and tumors cells. But in U87 models, dual labeled peptide only could bind to tumor associated blood vessels. Also, Irradiation of PC-3M and CT-26 cell treated with TNYL-PEG-HAuNS nanopatilces with near-infrared (NIR) laser resulted in selective destruction of these cells in vitro. EphB4 targeted TNYL-PEG-HAuNS showed more photothermal killing effect on CT26 tumor model than PEG-HAuNS did. In summary, tumors with overexpression of EphB4 receptors can be noninvasively visualized by micro PET/CT with 64Cu labeled or dual labeled TNYL-RAW peptide. Targeted delivery of TNYL-RAW conjugated HAuNS into tumors can greatly improve the treatment effect of photothermal therapy. The information acquired with this study should be advantageous in improving diagnostics and future applications in photothermal ablation therapy in clinical.