16 resultados para Multivariate wavelet analysis
em DigitalCommons@The Texas Medical Center
Resumo:
The ascertainment and analysis of adverse reactions to investigational agents presents a significant challenge because of the infrequency of these events, their subjective nature and the low priority of safety evaluations in many clinical trials. A one year review of antibiotic trials published in medical journals demonstrates the lack of standards in identifying and reporting these potentially fatal conditions. This review also illustrates the low probability of observing and detecting rare events in typical clinical trials which include fewer than 300 subjects. Uniform standards for ascertainment and reporting are suggested which include operational definitions of study subjects. Meta-analysis of selected antibiotic trials using multivariate regression analysis indicates that meaningful conclusions may be drawn from data from multiple studies which are pooled in a scientifically rigorous manner. ^
Resumo:
Dialysis patients are at high risk for hepatitis B infection, which is a serious but preventable disease. Prevention strategies include the administration of the hepatitis B vaccine. Dialysis patients have been noted to have a poor immune response to the vaccine and lose immunity more rapidly. The long term immunogenicity of the hepatitis B vaccine has not been well defined in pediatric dialysis patients especially if administered during infancy as a routine childhood immunization.^ Purpose. The aim of this study was to determine the median duration of hepatitis B immunity and to study the effect of vaccination timing and other cofactors on the duration of hepatitis B immunity in pediatric dialysis patients.^ Methods. Duration of hepatitis B immunity was determined by Kaplan-Meier survival analysis. Comparison of stratified survival analysis was performed using log-rank analysis. Multivariate analysis by Cox regression was used to estimate hazard ratios for the effect of timing of vaccine administration and other covariates on the duration of hepatitis B immunity.^ Results. 193 patients (163 incident patients) had complete data available for analysis. Mean age was 11.2±5.8 years and mean ESRD duration was 59.3±97.8 months. Kaplan-Meier analysis showed that the total median overall duration of immunity (since the time of the primary vaccine series) was 112.7 months (95% CI: 96.6, 124.4), whereas the median overall duration of immunity for incident patients was 106.3 months (95% CI: 93.93, 124.44). Incident patients had a median dialysis duration of hepatitis B immunity equal to 37.1 months (95% CI: 24.16, 72.26). Multivariate adjusted analysis showed that there was a significant difference between patients based on the timing of hepatitis B vaccination administration (p<0.001). Patients immunized after the start of dialysis had a hazard ratio of 6.13 (2.87, 13.08) for loss of hepatitis B immunity compared to patients immunized as infants (p<0.001).^ Conclusion. This study confirms that patients immunized after dialysis onset have an overall shorter duration of hepatitis B immunity as measured by hepatitis B antibody titers and after the start of dialysis, protective antibody titer levels in pediatric dialysis patients wane rapidly compared to healthy children.^
Resumo:
Purpose. A descriptive analysis of glioma patients by race was carried out in order to better elucidate potential differences between races in demographics, treatment, characteristics, prognosis and survival. ^ Patients and Methods. Among 1,967 patients ≥ 18 years diagnosed with glioma seen between July 2000 and September 2006 at The University of Texas M.D. Anderson Cancer Center (UTMDACC). Data were collated from the UTMDACC Patient History Database (PHDB) and the UTMDACC Tumor Registry Database (TRDB). Chi-square analysis, uni- /multivariate Cox proportional hazards modeling and survival analysis were used to analyze differences by race. ^ Results. Demographic, treatment and histologic differences exist between races. Though risk differences were seen between races, race was not found to be a significant predictor in multivariate regression analysis after accounting for age, surgery, chemotherapy, radiation, tumor type as stratified by WHO tumor grade. Age was the most consistent predictor in risk for death. Overall survival by race was significantly different (p=0.0049) only in low-grade gliomas after adjustment for age although survival differences were very slight. ^ Conclusion. Among this cohort of glioma patients, age was the strongest predictor for survival. It is likely that survival is more influenced by age, time to treatment, tumor grade and surgical expertise rather than racial differences. However, age at diagnosis, gender ratios, histology and history of cancer differed significantly between race and genetic differences to this effect cannot be excluded. ^
Factors associated with needle sharing among Black male injection drug users in Harris County, Texas
Resumo:
Background. Injection drug users (IDUs) are at increased risk for HIV transmission due to unique risk behaviors, such as sharing needles. In Houston, IDUs account for 18% of all HIV/AIDS cases among Black males. ^ Objectives. This analysis compared demographic, behavioral, and psychosocial characteristics of needle sharing and non-sharing IDUs in a population of Black males in Harris County, Texas. ^ Methods. Data used for this analysis were from the second IDU cycle of the National HIV Behavioral Surveillance System. This dataset included a sample of 288 Black male IDUs. Univariate and multivariate statistical analysis were performed to determine statistically significant associations of needle sharing in this population and to create a functional model to inform local HIV prevention programs. ^ Results. Half of the participants in this analysis shared needles in the past 12 months. Compared to non-sharers, sharers were more likely to be homeless (OR=3.70, p<0.01) or arrested in the past year (OR=2.31, p<0.01), inject cocaine (OR=2.07, p<0.01), report male-to-male sex in the past year (OR=6.97, p<0.01), and to exchange sex for money or drugs. Sharers were less likely than non-sharers to graduate high school (OR=0.36, p<0.01), earn $5,000 or more a year (OR=1.15, p=0.05), get needles from a medical source (OR=0.59, p=0.03), and ever test for HIV (OR=0.17, p<0.01). Sharers were more likely to report depressive symptoms (OR=3.49, p<0.01), lower scores on the family support scale (mean difference 0.41, p=0.01) and decision-making confidence scale (mean difference 0.38, p<0.01), and greater risk-taking (mean difference -0.49, p<0.01) than non-sharers. In a multivariable logistic regression, sharers were less likely to have graduated high school (OR=0.33, p<0.01) and have been tested for HIV (OR=0.12, p<0.01) and were more likely to have been arrested in the past year (OR=2.3, p<0.01), get needles from a street source (OR=3.87, p<0.01), report male-to-male sex (OR=7.01, p<0.01), and have depressive symptoms (OR=2.36, p=0.02) and increased risk-taking (OR=1.78, p=0.01). ^ Conclusions. IDUs that shared needles are different from those that did not, reporting lower socioeconomic status, increased sexual and risk behaviors, increased depressive symptoms and increased risk-taking. These findings suggest that intervention programs that also address these demographic, behavioral, and psychosocial factors may be more successful in decreasing needle sharing among this population.^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
The role of clinical chemistry has traditionally been to evaluate acutely ill or hospitalized patients. Traditional statistical methods have serious drawbacks in that they use univariate techniques. To demonstrate alternative methodology, a multivariate analysis of covariance model was developed and applied to the data from the Cooperative Study of Sickle Cell Disease.^ The purpose of developing the model for the laboratory data from the CSSCD was to evaluate the comparability of the results from the different clinics. Several variables were incorporated into the model in order to control for possible differences among the clinics that might confound any real laboratory differences.^ Differences for LDH, alkaline phosphatase and SGOT were identified which will necessitate adjustments by clinic whenever these data are used. In addition, aberrant clinic values for LDH, creatinine and BUN were also identified.^ The use of any statistical technique including multivariate analysis without thoughtful consideration may lead to spurious conclusions that may not be corrected for some time, if ever. However, the advantages of multivariate analysis far outweigh its potential problems. If its use increases as it should, the applicability to the analysis of laboratory data in prospective patient monitoring, quality control programs, and interpretation of data from cooperative studies could well have a major impact on the health and well being of a large number of individuals. ^
Resumo:
The purpose of this analysis of the shortage of Registered Nurses (RNs) in acute care hospitals in El Paso, Texas, was to evaluate twenty-two specific organizational and/or patient care unit (nursing unit) characteristics that effect the retention and turnover of professional nurses. Vacancy Rates were used to measure the level of the shortage in each hospital and nursing unit in the study. Vacancy Rates are a function of both RN retention and RN turnover. Seventy-three patient care units in five acute care hospitals were included in the study population.^ Fredrick Herzberg's motivational - hygiene theory was used to explain the types of characteristics or factors that can effect worker dissatisfaction. Dissatisfiers (hygiene factors) are those work place characteristics that influence workers to leave the job. The twenty-two potentially dissatisfying work place characteristics were either organizational or patient care unit specific in nature. The focus of the study was to evaluate high vacancy rates caused by both low retention of RNs and high turnover rates. Retention and turnover are a function of workers (RNs) not staying in their jobs, therefore hygiene factors were appropriate characteristics to study.^ Various multivariate analysis techniques were used to assess both the individual and combined effects of the hygiene factors on Vacancy Rates, Retention and Turnover. Results suggest that certain organizational and patient care unit characteristics are associated with and have a statistically significant effect on vacancy rates, and the retention and turnover of RNs. The type of Hospital was of particular interest in this regards. For-Profit facilities were less effected by most of the study variables than the Not-for-Profits. ^
Resumo:
Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^
Resumo:
Introduction and objective. A number of prognostic factors have been reported for predicting survival in patients with renal cell carcinoma. Yet few studies have analyzed the effects of those factors at different stages of the disease process. In this study, different stages of disease progression starting from nephrectomy to metastasis, from metastasis to death, and from evaluation to death were evaluated. ^ Methods. In this retrospective follow-up study, records of 97 deceased renal cell carcinoma (RCC) patients were reviewed between September 2006 to October 2006. Patients with TNM Stage IV disease before nephrectomy or with cancer diagnoses other than RCC were excluded leaving 64 records for analysis. Patient TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were analyzed in relation to time to metastases. Time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from metastases to death. Finally, analysis of laboratory values at time of evaluation, Eastern Cooperative Oncology Group performance status (ECOG), UCLA Integrated Staging System (UISS), time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from evaluation to death. Linear regression and Cox Proportional Hazard (univariate and multivariate) was used for testing significance. Kaplan-Meier Log-Rank test was used to detect any significance between groups at various endpoints. ^ Results. Compared to negative lymph nodes at time of nephrectomy, a single positive lymph node had significantly shorter time to metastasis (p<0.0001). Compared to other histological types, clear cell histology had significant metastasis free survival (p=0.003). Clear cell histology compared to other types (p=0.0002 univariate, p=0.038 multivariate) and time to metastasis with log conversion (p=0.028) significantly affected time from metastasis to death. A greater than one year and greater than two year metastasis free interval, compared to patients that had metastasis before one and two years, had statistically significant survival benefit (p=0.004 and p=0.0318). Time from evaluation to death was affected by greater than one year metastasis free interval (p=0.0459), alcohol consumption (p=0.044), LDH (p=0.006), ECOG performance status (p<0.001), and hemoglobin level (p=0.0092). The UISS risk stratified the patient population in a statistically significant manner for survival (p=0.001). No other factors were found to be significant. ^ Conclusion. Clear cell histology is predictive for both time to metastasis and metastasis to death. Nodal status at time of nephrectomy may predict risk of metastasis. The time interval to metastasis significantly predicts time from metastasis to death and time from evaluation to death. ECOG performance status, and hemoglobin levels predicts survival outcome at evaluation. Finally, UISS appropriately stratifies risk in our population. ^
Resumo:
We conducted a nested case-control study to determine the significant risk factors for developing encephalitis from West Nile virus (WNV) infection. The purpose of this research project was to expand the previously published Houston study of 2002–2004 patients to include data on Houston patients from four additional years (2005–2008) to determine if there were any differences in risk factors shown to be associated with developing the more severe outcomes of WNV infection, encephalitis and death, by having this larger sample size. A re-analysis of the risk factors for encephalitis and death was conducted on all of the patients from 2002–2008 and was the focus of this proposed research. This analysis allowed for the determination to be made that there are differences in the outcome in the risk factors for encephalitis and death with an increased sample size. Retrospective medical chart reviews were completed for the 265 confirmed WNV hospitalized patients; 153 patients had encephalitis (WNE), 112 had either viral syndrome with fever (WNF) or meningitis (WNM); a total of 22 patients died. Univariate logistic regression analyses on demographic, comorbidities, and social risk factors was conducted in a similar manner as in the previously conducted study to determine the risk factors for developing encephalitis from WNV. A multivariate model was developed by using model building strategies for the multivariate logistic regression analysis. The hypothesis of this study was that there would be additional risk factors shown to be significant with the increase in sample size of the dataset. This analysis with a greater sample size and increased power supports the hypothesis in that there were additional risk factors shown to be statistically associated with the more severe outcomes of WNV infection (WNE or death). Based on univariate logistic regression results, these data showed that even though age of 20–44 years was statistically significant as a protecting effect for developing WNE in the original study, the expanded sample lacked significance. This study showed a significant WNE risk factor to be chronic alcohol abuse, when it was not significant in the original analysis. Other WNE risk factors identified in this analysis that showed to be significant but were not significant in the original analysis were cancer not in remission > 5 years, history of stroke, and chronic renal disease. When comparing the two analyses with death as an outcome, two risk factors that were shown to be significant in the original analysis but not in the expanded dataset analysis were diabetes mellitus and immunosuppression. Three risk factors shown to be significant in this expanded analysis but were not significant in the original study were illicit drug use, heroin or opiate use, and injection drug use. However, with the multiple logistic regression models, the same independent risk factors for developing encephalitis of age and history of hypertension including drug induced hypertension were consistent in both studies.^
Resumo:
Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^
Resumo:
The electroencephalogram (EEG) is a physiological time series that measures electrical activity at different locations in the brain, and plays an important role in epilepsy research. Exploring the variance and/or volatility may yield insights for seizure prediction, seizure detection and seizure propagation/dynamics.^ Maximal Overlap Discrete Wavelet Transforms (MODWTs) and ARMA-GARCH models were used to determine variance and volatility characteristics of 66 channels for different states of an epileptic EEG – sleep, awake, sleep-to-awake and seizure. The wavelet variances, changes in wavelet variances and volatility half-lives for the four states were compared for possible differences between seizure and non-seizure channels.^ The half-lives of two of the three seizure channels were found to be shorter than all of the non-seizure channels, based on 95% CIs for the pre-seizure and awake signals. No discernible patterns were found the wavelet variances of the change points for the different signals. ^
Resumo:
Individuals with disabilities face numerous barriers to participation due to biological and physical characteristics of the disability as well as social and environmental factors. Participation can be impacted on all levels from societal, to activities of daily living, exercise, education, and interpersonal relationships. This study evaluated the impact of pain, mood, depression, quality of life and fatigue on participation for individuals with mobility impairments. This cross sectional study derives from self-report data collected from a wheelchair using sample. Bivariate correlational and multivariate analysis were employed to examine the relationship between pain, quality of life, positive and negative mood, fatigue, and depression with participation while controlling for relevant socio-demographic variables (sex, age, time with disability, race, and education). Results from the 122 respondents with mobility impairments demonstrated that after controlling for socio-demographic characteristics in the full model, 20% of the variance in participation scores were accounted for by pain, quality of life, positive and negative mood, and depression. Notably, quality of life emerged as being the single variable that was significantly related to participation in the full model. Contrary to other studies, pain did not appear to significantly impact participation outcomes for wheelchair users in this sample. Participation is an emerging area of interest among rehabilitation and disability researchers, and results of this study provide compelling evidence that several psychosocial factors are related to participation. This area of inquiry warrants further study, as many of the psychosocial variables identified in this study (mood, depression, quality of life) may be amenable to intervention, which may also positively influence participation.^
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.
Resumo:
Study Objective: Identify the most frequent risk factors of Community Acquired-MRSA (CA-MRSA) Skin and Soft-tissue Infections (SSTIs) using a case series of patients and characterize them by age, race/ethnicity, gender, abscess location, druguse and intravenous drug-user (IVDU), underlying medical conditions, homelessness, treatment resistance, sepsis, those whose last healthcare visit was within the last 12 months, and describe the susceptibility pattern from this central Texas population that have come into the University Medical Center Brackenridge (UMCB) Emergency Department (ED). ^ Methods: This study was a retrospective case-series medical record review involving a convenience sample of patients in 2007 from an urban public hospital's ED in Texas that had a SSTI that tested positive for MRSA. All positive MRSA cultures underwent susceptibility testing to determine antibiotic resistance. The demographic and clinical variables that were independently associated with MRSA were determined by univariate and multivariate analysis using logistic regression to calculate odds ratios (OR), 95% confidence intervals, and significance (p≤ 0.05). ^ Results: In 2007, there were 857 positive MRSA cultures. The demographics were: males 60% and females 40%, with the average age of 36.2 (std. dev. =13) the study population consisted of non-Hispanic white (42%), Hispanics (38%), and non-Hispanic black (18.8%). Possible risk factors addressed included using recreational drugs (not including IVDU) (27%) homelessness (13%), diabetes status (12.6%) or having an infectious disease, and IVDU (10%). The most frequent abscess location was the leg (26.6%), followed by the arm and torso (both 13.7%). Eighty-three percent of patients had one prominent susceptibility pattern that had a susceptibility rate for the following antibiotics: trimethoprim/sulfamethoxazole (TMP-SMX) and vancomycin had 100%, gentamicin 99%, clindamycin 96%, tetracycline 96%, and erythromycin 56%. ^ Conclusion: The ED is becoming an important area for disease transmission between the sterile hospital environment and the outside environment. As always, it is important to further research in the ED in an effort to better understand MRSA transmission and antibiotic resistance, as well as to keep surveillance for the introduction of new opportunistic pathogens into the population. ^